Project 3 Overview

mmediate Files
mmediate Files in Minix

_ist Resources “Isr” System Call

Immediate Files

e What is an immediate file?

— A file where the entire data contents are stored in
the inode block containing file meta-data

* Why would we want an immec
— Minimizes disk waste for small fi

— Maximizes performance for sma

iate file?
es
| files

More on Why (

1)

UC Santa Barbara ‘7

Table I. Percentage of files smaller or equal to the

indicated length

File length Percentage File length Percentage

1 1-79 1024

2 1-88 2048

+ 2-01 4096

S 2-31 8192

16 3-32 16,384
s 32768
64 8-71 65,536

128 14-73 131,072
256 2309 262,144
512 3444 524,288

48-05
60-87
73-51
84-97
92-53
97-21
99-18
99-84
99-96
100-00

Bryce Boe —CS170 S11

Immediate Files in Minix

* |Inode structure: mfs/inode.h
e Constants: mfs/const.h

e Syscalls to modify
— Create / Unlink
— Open / Truncate
— Read / Write
— Others?

Minix FS Services

User processes interact with the virtual file
system (VFS)

VFS talks with the appropriate file system
service such as ext2, hgfs, iso9660fs, mfs, pfs

If you took the default, this will be mfs for you
Make sure this is MFS for you

servers/mfs/inode.h

Inode

A/M/C
Time

Permissions # Links UID / GID Size

Direct (7) Indirect (3)

Bryce Boe —CS170 S11

servers/mfs/inode.h
UC Santa Barbara }7

Inode
D

A/M/C
Time

Permissions # Links UID / GID Size

Direct (7) Indirect (3)

Bryce Boe —CS170 S11

Another view

EXTERN struct inode {

mode_t 1_mode; /*
nlink_t i_nlinks; /*
uid_t 1i_uid; /*
gid_t 1_gid; /*
off_t 1_size; /*

time_t 1i_atime; /*
time_t 1_mtime; /*
time_t 1_ctime; /*

file type, protection, etc. */
how many links to this file */
user id of the file's owner */
group number */

current file size in bytes */
time of last access (V2 only) */
when file data last changed */
when was inode itself changed */

zone_t 1_zone[V2_NR_TZONES]; /* zone numbers */

<remainder of struct not saved on disk>

}

#define V2_NR_DZONES 7 /* # direct zone numbers in ... */
#define V2_NR_TZONES 10 /* total # zone numbers in ... */

Block Pointers

e 7 direct block pointers take up 28 bytes
* 3 indirect block pointers take up 12 bytes

* 40 bytes of each inode used for pointers
— Let’s use it for data! Yay!!!

HOW TO DISTINGUISH BETWEEN
REGULAR AND IMMEDIATE?

include/minix/const.h

* Defines constants used by mfs
— | _REGULAR —regular file
— |_TYPE — mask for file type

* Note: These are used in ushorts (2 bytes)

e Suggestion: Add an | IMMEDIATE that fits in
ushort and doesn’t conflict with existing masks

Constants used fori mode

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

I_TYPE
I_SYMBOLIC_LINK
I_REGULAR
I_BLOCK_SPECIAL
I_DIRECTORY
I_CHAR_SPECIAL
I_NAMED_PIPE
I_SET_UID_BIT
I_SET_GID_BIT
ALL_MODES
RWX_MODES

R_BIT

W_BIT

X_BIT
I_NOT_ALLOC

0170000
0120000
0100000
0060000
0040000
0020000
0010000
0004000
0002000
0006777
0000777
0000004
0000002
0000001
0000000

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

1node type */

symbolic link */

regular file */

block special file */
file 1s a directory */
character special file */
named pipe (FIFOQ) */

set effective uid_t */
set effective gid_t */
all bits for u,g,o */
mode bits for RWX only */
Rwx protection bit */

rWx protection bit */

rwX protection bit */
this inode 1s free */

IMPLEMENTATION TIPS

Tip: How to start

e Step 1: Successfully set immediate bit on
creation, and put checks on open/read/write/
delete when an immediate file is encountered.

e Step 2: Implement the immediate file

 Warning: Make regular backups of your minix
image, as you might destroy it

Tip: Adding Files

* Set immediate flag whenever a regular file is
initially created

* Suggestion: Find all places where files can be
created in the MFS.

Tip: Deleting Files

 When files are deleted typically indirect blocks
need to be freed

e Skip this step if immediate

e Suggestion: As before trace the few places
that perform this behavior in the MFS.

Tip: Reading / Writing Files

e If immediate read from inode otherwise read
as regular

 When file size grows beyond 34 bytes convert
to regular file

What are v1, v2, v3 files?

* v1 files are for older files -- ignore
* v2 files are what this version of minix creates

e v3 files don’t exist, however there are a few
comments about them -- ignore

List Resources System Call

* int Isr(char *path);
e Path can be absolute or relative
* Must Output

— All process ids that have the file open
— All blocks on disk that contain the file contents

* |f immediate list “immediate”
* |f empty list “empty”
— If the file doesn’t exist, return ENOENT

References

1. Mullender, S. J. and Tanenbaum, A. S. 1984.
Immediate files. Softw. Pract. Exper. 14, 4
(Jun. 1984), 365-368. DOI= http://dx.doi.org/
10.1002/spe.4380140407

