Project 2 Overview

* Semaphores
 Semaphore Service in Minix
* Pizza Synchronization Problem




Semaphore

* What is a semaphore?

— “A semaphore is a data structure that is useful for

solving a variety of synchronization problems”
Downey, The Little Book of Semaphores

* Types of synchronization problems
— Serialization: A must occur before B

— Mutual Exclusion: A and B cannot happen
concurrently




More on Semaphores

* Like an integer but...

— Can be initialized to any value and then restricted
to two main operations operations

— Incremented -- V(), up()
— Decremented — P(), down()

e Why Pand V?

— Initials of Dutch words verhogen (increase) and
the portmanteau prolaag [probeer te verlagen]
(try to reduce)




Adding Semaphores to Minix

* Implemented as a service
— Needs to call sef _startup on initialization
— Calls sef_receive_status to retrieve messages

— The service requires the appropriate permissions (/
etc/system.conf) to send/receive messages from other
processes

e User-level interface needs to construct messages
to pass to the service

— Use minix_rs_lookup to find the dynamic service
endpoint




Semaphore Interface

* int sem _init(int value)

— Initializes new semaphore to value and returns the
lowest available semaphore number >=0

* intsem_up(int sem_num)

— If no one is waiting, increases the semaphore
value

— otherwise “wakes up” a the oldest waiting process




Semaphore Interface cont.

* int sem_down(int sem_num)
— Decreases the semaphore value

— If the semaphore value <=0 “sleep” the
requesting process

* int sem_release(int sem_num)

— If no one is waiting, free the semaphore so that it
can be re-used

— Otherwise return EINUSE error (need to define in
errno.h)




Error Handling

* |f an invalid value is passed anywhere EINVAL
should be returned to the user

* |f any functions return an error, the errno
corresponding to that error should be
returned

— Such as: malloc, minix_rs_lookup




Semaphore (Pizza) Challenge

6 grads, 2 ugrads, 2 tables with pizza
Only 1 student can eat at a table at a time

Student can only enter room if table is
available

Grads have priority

— 1 ugrad is eating and 1 grad comes in, the ugrad
must least

— 1 grad is eating, no ugrad can enter




Semaphore Challenge cont.

Write two programs
— grad.c —manage the 6 graduate students
— ugrad.c — manage the 2 undergraduate students

Use semaphores to correctly manage the
consumption of pizza

Solution cannot cause starvation
Explain your solution in pizza.txt




Semaphore Challenge Questions

* How can you dynamically share semaphore
numbers between processes?

* How do you determine how often the
students want to eat, and for how long they
eat?




Suggested Implementation Order

Create skeleton server sema

Load and unload sema server via
— service up /usr/sbin/sema
— service down sema

Complete sema service
Complete semaphore “pizza” challenge

Ensure patch builds everything by running
“make world” and your service starts up after
a reboot




Implementation Notes

Copy sched service in servers/ to sema

Update etc/systems.conf to add sched service
(see man systems.conf if needed)

Add constants to include/minix/com.h
Add appropriate rc file to start semaphore server

Under /usr/src

— make includes (updates include files)

— make libraries (builds and updates libraries)
— make etcforce (updates etc files)

— make —C servers install (builds all servers)




Resources

* The Little Book of Semaphores

— http://greenteapress.com/semaphores/
downey08semaphores.pdf

* Driver programming in Minix

— http://wiki.minix3.org/en/DevelopersGuide/
DriverProgramming

— Similar setup process

Bryce Boe — CS170 S11



