Schedule

* Announcements
— Send me email with teams and team name
— Demo times (4/26, 5/17, 6/7 from 3-7)

— Anonymous Feedback
* http://cs.ucsb.edu/~bboe/p/suggestion

* Project1l
— Simple Shell (35 minutes)
— Lottery Scheduler (15 minutes)




Project 1 - Two Parts

* Simple Shell
— Read input from standard in
— Handle special cases with >, <, |, &
— All shell output to stdout
— No debugging output

* Minix Lottery Scheduling

— Piggyback lottery scheduler for user processes on
existing priority scheduler

— Add system call to change number of tickets for a
process




What is a shell?

e Control program execution

* Manage program input and output

. C | " ;

* Switch-betweenforeground-and-background
processes




System Calls You Will Need

fork — copy current process including all file
descriptors

exec — replace running process with code from
program (file descriptors persist)

waitpid — current process waits until pid
terminates

pipe — create memory mapped file

dup/dup2 — update process file descriptor
numbers




Great C Resource

* Opengroup.org
* Google search to find command:
— fork site:opengroup.org




pid_t fork(void)

int pid;
switch (pid = fork()) {
case O:
/* child process */ break;
case -1:
/* error */ break;
default:
/* parent process when pid >0 */




int execvp(const char *file, char *const

argv(]);
char *argv[] = {“Is”, “-1a”, “/tmp”, NULL}
if (execvp(argv[0], argv))

/* exec failed, maybe file not found */
else

[* g”aFaHtEEd to-neverenter hEFe * /




pid t waitpid(pid t pid, int *stat loc,
int options);

pid_t child_pid;

Int status;

if ((child_pid = fork() !'=0) {
waitpid(child_pid, &status, 0);
printf("%d\n", status); /* should be 1 */

} else {
exit(1);

}




int pipe(int fildes[2]);

int fildes[2]; char buf[BUFSIZ];

if (pipe(fildes)){ /* error */ }

if (fork()) {
close(fildes[0]); /* close read end */
write(fildes[1], “foobar\n”, 7);

} else {
close(fildes[1]); /* close write end */
read(fildes[O], buf, 7); /* reads foobar */

}




int dup2(int fildes, int fildes2);

/* redirect stdout to a file */

int fp;

fp = open("/tmp/somefile”, 'w'); /* 3 */
close(STDOUT FILENO); /* close 0 */
dup2(fp, STDOUT_FILENOQ); /* clone 3to 0 */
close(fp); /* close 3 */




Parsing Commands

e Command input represents a grammar
— Begin -> command (<’ file)? ("> file)? ‘&’?
— Begin -> command (<’ file)? ‘|’ Extended
— Extended -> command (>’ file)? ‘&’?
— Extended -> command ‘|’ Extended

* Must parse the commands properly and
create the execution chain




Process Tree Creation Questions

* How do we launch a single process and have
the shell wait?

— What about I/O redirection?

* How do we launch two processes with a pipe
between them?

— Which process does the shell wait on?
— What file descriptors does each process inherit?




Current Minix Scheduler

* Priority scheduler
— 1. Kernel tasks (system task / clock task)
— 2. Device drivers
— 3. Server processes
— 4, User processes
— Last. Idle process

* Implemented with 16 queues
* Highest priority process in ‘ready’ state is run




Running Processes

e Each process has a quanta (total time to run)

* Higher priority queues may provide more
guanta

* Processes run until either

— They give up the CPU when making a system call
such as 10 (return to the head of their queue
when ‘ready’ again

— Their quanta is exhausted (return to end of

current queue, higher queue, or lower queue
depending)




Switching Queues

* |f there are no other “ready” processes when
a process exhausts its entire quanta twice the
orocess moves up to a higher priority queue

* |f there other other “ready” processes when a
orocess exhausts its entire quanta twice the
orocess moves down to a lower priority queue

* Processes can request a change via the nice
system call




Priority Scheduler Questions

* Which is given priority 10 bound or CPU
bound?

* Can high priority processes starve low priority
processes?

 What happens if a device driver or server

(high priority) enters a CPU bound infinite
loop?




Lottery Scheduler

e Each (user) process is given 5 tickets to start

* At each scheduling decision:

— chose a random number between 0 and the total
number of assigned tickets - 1

— schedule process “holding” that ticket

* Processes can modify their priority via
setpriority(ntickets) (max 100 tickets)




Integration

Keep it simple
Only user processes are required to use the
lottery scheduler

Do not need to worry about breaking the nice
system call for user processes

Do not need to worry about handling the
setpriority system call for kernel/device/server

processes




To consider

* How do we find the process that is elected?

* Incrementally test small changes to ensure
you haven’t broke the scheduler

* Write minix user programs to test functionality

— Equivalent processes running concurrently should
complete in the same time

— If process A has twice the priority of process B it
should complete in approximately half the time




Good luck!

e Questions?

Bryce Boe — CS170 S11




