Variables

Bryce Boe
2012/09/05
CS32, Summer 2012 B

Overview

* Review of Variable Segment Locations
* Variable types and storage

Review

The program’s code is stored in the text segment
(it is read-only)

The value(s) of initialized global and static
variables are stored in the data segment

The value(s) of uninitialized global and static
variables are stored in the bss segment

The value(s) of local variables are stored on the
stack

The value(s) of dynamically allocated variables
are stored on the heap

Sections of an executable file

Memory

Executable Object File 0 Segments: Kernel virtual memory I invisible to
ELF header 0xc0000000 user code
User stack
Program header table (created at runtime) %
(required for executables) esp
(stack

text section Memory-mapped region for
A shared libraries

I
Run-time heap
(created by malloc)
Read/write segment Loaded
| e (data, bss) from
the
Read-only segment || saccutable
Section header table (.init, .text, .rodata) file

. 0x08048000
(required for relocatables)

0

Where is all the data stored?

intal[] =15, 6, 7, 8, 9};
char msg[] = “hello world”;
int main {

static int call _count =0;

Inti;

return O;

Where is all the data stored?

int al[5];
char *msg;
int main {
int blah[16];
string *tmp = new string(“some message”);
return O;

J

Where is all the data stored?

int al[5]; class Point {
int main { private:
Point p; !nt a

int b;
return O;

string *name;

} 5

How do initialized local arrays work?

void main2(int count) {
if (count <= 0) return;
int array[] =10, 1, 2, 3, 4};
main2(count — 1);
}
int main() {
main2(3);
return O;

J

Function’s Activation Record

* Stores:
— Return value
— Previous AR’s ebp (base pointer)
— Function parameters
— Function local variables

e 1 activation record per function call (allows for
recursion)

Why is mixing data and control on the
stack not the best idea?

e Data
— Variable values

e Control
— Return value

— Previous EBP

e Buffer overflow example

Variables and objects in memory

IAl

16916 (short big endian)

01000001

01000010

00010100

Variables and data objects are data containers

with names

The value of the variable is the code stored in the

container

To evaluate a variable is to fetch the code from
the container and interpret it properly

To store a value in a variable is to code the value
and store the code in the container

The size of a variable is the size of its container

Variable Types and Storage

Overflow is when a data code is larger
than the size of its container

* e.g8., char i; //JUStlbyte variable i

int *p — (ll’lt*) S // |ega| 01001001100101100000001011010100
*p = 1673579060;
// result if "big endian" storage:

* If whole space (X) belongs to this program:

— Seems OK if X does not contain important data for rest of
the program’ s execution

— Bad results or crash if important data are overwritten

* If all or part of X belongs to another process, the
program is terminated by the OS for a memory
access violation (i.e., segmentation fault)

More about overflow

Previous slide showed example of "right overflow" —
result truncated (also warning)

01000001 010001...

Compilers handle "left overflow" by truncating too (usually

without any warning)

— Easily happens: unsigned char i = 255;
11111111

i++; // What is the result of this increment?

1 00000000

Placement & padding —

010010011001011000660Q

+ Compller places data T
at word boundaries -
— e.g., word =4 bytes A

L] . H ‘ h 2wl
o I m a gl n e : a machine word a machin
struct {
data variable x
char a; completely
ignored, junk
' padding
int b; _ .
b ox; 01001001F AJ10010110000000101101010001101101

e Classes too

a machine word a machine word

Pointers are data containers too

* Asits value isa memory
address, we say it "points” to a

place in memory .
* It points at just 1 byte, so it byte vith address

must "know" what data type 8090346
starts at that address

— How many bytes?
— How to interpret the bits?
e Question: What is stored in the

4 bytes at addresses
802340..802343 in the

diagram at rlght? ..0101/01000001010000100100001101000100/1 100...
— Continued next slide

byte with address

8090346
joososas | [[[]|

int*p

address address address address

802340 802341 802342 802343

...0101/010000010100001001000011010001001100...
What is A AR A

address address address address
802340 802341 802342 802343

Could be four chars: “A’,

‘B” ‘C’, ‘D

Or it could be two shorts:
16961, 17475 b

—
...0101/01000001010000100100001101000100(1100...

...0101/01000001/010000100100001101000100/1100...

char*b ASCII code for ‘A’

— All numerical values shown here
. . . * inary code for short 16916
are for a "little endian" machine |[EEEEEEIARREI
(more about endian next slide)

address
b4
Maybe it S a |Ong Or an int: ~.0101/01000001010000100100001101000100]1100...
1145258561 inep Binary code for in 1145258561

It could be a floating point 2
number too: 781.035217 | tE

float* £ bmary_code fo'r float 78’_1 .035217
(on a little endian machine)

Beware: two different byte orders

Matters to actual value of anything but chars
Say: short int x = 1;
On a big endian machine it looks like this:

00000000 |0000000

— Some Macs, JVM, TCP/IP "Network Byte Order”
On a little endian machine it looks like this:

0000000 00000000

— Intel, most communication hardware

