Programs in Memory

Bryce Boe
2012/08/29
CS32, Summer 2012 B

Overview

Project 2 Overview

Inheritance and assignment operator
Virtual Keyword / Polymorphism
Abstract classes

Compilation Process

Programs on Disk and in Memory

Project 2: A semi-simple card game

* Turn-based card game where the goal is to

eliminate other players by bringing their hp
down to zero

* Resources (created only once at the start):
— Cards

e Can have multiple instances of the same card

— Player

Classes

CEInlE
— Deals cards
— Hands control to players in order

Player (abstract)
— Has two sets of cards (deck and discard)
— Plays cards on other players (or themselves)

Deck (of cards)
— Simple AST for holding cards and shuffling

Card

— Can attack or heal other players

Relevant Card Interface

 virtual void perform_action(from, to, hp)

— Called indirectly by player to perform the card’s
action on another player

* virtual void discard()
— Called by player when Card is discarded
e virtual int get_hp()

— Report the hp this card can attack (negative value)
or heal (postive value) with

Relevant Player Interface

 virtual void take turn(const Card& card);
— Needs to determine who to play card on.

Your Task

 Add additional Cards

— ReflectorCard
* Heals the attacker while performing the attack

— RolloverHPCard

* Left over hp can be accumulated and used on later
turns

— SnowhballCard

* Becomes stronger each time it is played

Implement Additional Players

e AttackWeakest

— Always attack the weakest player
.« 77?7

— Undetermined as of yet

Inheritance and Assignment Operator

e Often want to call parent’s assighment
operator

Virtual Keyword

e Allows for late binding, aka dynamic dispatch
* Essentially Polymorphism

— Associate many meanings to one function

Abstract Classes

* Classes can have purely virtual functions (no
definition)

* A class with purely virtual functions are said to
be abstract classes

* Cannot directly declare instances of abstract
classes

virtual void output() const = 0;

Programs on Disk and Memory

Program building

Have: source code — human readable instructions

Need: machine language program — binary
instructions and associated data regions, ready to
be executed

clang/gcc does two basic steps: compile, then link
— To compile means translate to object code

— To link means to combine with other object code
(including library code) into an executable program

mypgm.cpp mypgm.o mypgm

(source code) (object code) (executable)

Link combines object codes

* From multiple source files and/or libraries
— e.g., always libc.a

mypgm.c Compile mypgm.o mypgm
(source code) (object code) (executable)

libc.a
(library file)

e Use -c option with clang/gcc to stop after creating .o file
-bash-4.1$ clang -c mypgm.c ; 1ls mypgm¥*

mypgm.c mypgm.o
— Is necessary to compile a file without a main function

* Laterlink it to libraries — alone or with other object files:
-bash-4.1$ clang -o mypgm mypgm.o ; ls mypgm¥*

mypgm mypgm.Cc mypgm.o

Compiling: 3 steps with C/C++

mypgm.c "Compile” mypgm.o

(source code) (object code)

Preprocess (source code mypgm.s Assemble
with preproc. (assembly

Compile

subsitutions) code)

* First the runs
— Creates temporary source code with text substitutions as directed
— Use clang -E torun it alone —output goes to stdout

 Then the source is actually compiled to assembly code
— Use clang -S to stop at this step and save code in . s file

e Last, produces the object code (machine language)

Another View

source
file 1

source

file 2 - iy
compilation (relocation +
v linking)

source
file N

Usually performed by clang/clang++/gcc/g++ in one uninterrupted sequence

object 3 definition

object 4 definition

Layout of C/C++ programs

Source code

é

... becomes

Object
module 2

Header section

Machine code section
(a.k.a. text section)

Initialized data section

Symbol table section

Relocation information
section

A sample C program — demo.c

#include <stdio.h> ° Has text section:
| the machine
int a[l0]={0,1,2,3,4,5,6,7,8,9}; d
int b[10]; code
e Has initialized
void main () { .
N global data: a
static int k = 3; e Uninitialized
fori - 05 i< 105 146 | global data: b
printf ("sd\n",ali]); e Static data: k
b[i] = k*al[i];
\ * Has alocal

} variable: 1

A possible structure of demo.o

Offset Contents Comment
Header section
number of bytes of Machine code section
number of bytes of initialized data section
number of bytes of Uninitialized data section (arrayb[])
(not part of this object module)
number of bytes of Symbol table section
number of bytes of Relocation information section
Machine code section (124 bytes)
20 code for the top of the for loop (36 bytes)
56 code for call to printf () (22 bytes)
68 code for the assignment statement (10 bytes)
88 code for the bottom of the for loop (4 bytes)
92 code for exiting main () (52 bytes) Object mod u |e
Initialized data section . .
144 0 beginning of array a[] contains neither

148 1 e ere e
: uninitialized data

176 8
180 9 end of array a[] (40 bytes) (b), nor any local
3

184 variable k (4 bytes ,
Symbol table section (60 bytes) va ria bles (1)
188 X array a[] : offset 0 in Initialized data section (12 bytes)

200 X variable k : offset 40 in Initialized data section (10 bytes)

210 X arrayb[] : offset 0in Uninitialized data section (12 bytes)

222 X main : offset 0 in Machine code section (12 bytes)

234 X printf : external, used at offset 56 of Machine code section (14 bytes)

Relocation information section (44 bytes)

248 X relocation information

Linux object file format

\177ELF
text
‘“ »” . . :.r.odata
* ELF —stands for Executable and Linking | .
Format -data
— A 4-byte magic number followed by a series bss
of named sections Symtab

* Addresses assume the object file is
placed at memory address O

— When multiple object files are linked rel.data
together, we must update the offsets
(relocation)

* Tools to read contents: objdump and
readelf — not available on all systems Section

header table

.rel.text

.debug

Jdine

ELF sections

.text = machine code (compiled program
instructions)

.rodata = read-only data
.data = initialized global variables

.bss = “block storage start” for
uninitialized global variables — actually
just a placeholder that occupies no space
in the object file

.symtab = symbol table with information
about functions and global variables
defined and referenced in the program

\177ELF
dext

:;odata
data
:Bss
gynﬂab
:;eLtext
:;eLdata
:Aebug
line

Section
header table

ELF Sections (cont.)

.rel.text = list of locations in .text section
that need to be modified when linked
with other object files

.rel.data = relocation information for

global variables referenced but not
defined

.debug = debugging symbol table; only
created if compiled with -g option

line = mapping between line numbers in
source and machine code in .text; used
by debugger programs

\177ELF
dext

:;odata
data
:Bss
gynﬂab
:;eLtext
:;eLdata
:Aebug
line

Section
header table

Creation of a load module

Object Module A

Header Section

Machine Code
Section

Initialized data
Section

Symbol table
Section

Header Section
Machine Code
Section
Initialized data
Section

Symbol table
Section

Object Module B

>
e

Load Module

Header Section

| Machine Code

Initialized data

Section

Symbol table
Section

Interleaved from multiple
object modules

— Sections must be
114 »”
relocated

Addresses relative to
beginning of a module

— Necessary to
translate from
beginnings of object
modules

When loaded — OS will
translate again to absolute

addresses

Loading and memory mapping

Header Section
Machine Code
Section

Initialized data
Section
Symbol table
Section

load module

(logical) address
space of
program 1

loading

initialized

Static data

Unused
logical
address
space

OPERATING
memory SYSTEM

mappin
pp g PHYSICAL MEMORY

Code

Static data
Dynamic data

logical
address

~—

memory
mapping

(logical)

address

space of
program 2

Static data
Dynamic data

Unused
Logical

address
space

(logical) address
space of
program 3

Includes
memory for
stack,
dynamic data
(i.e., free
store), and
un-initialized
global data
Physical
memory is
shared by
multiple
programs

Sections of an executable file

Memory

Executable Object File 0 Segments: Kernel virtual memory I invisible to
ELF header 0xc0000000 user code
User stack
Program header table (created at runtime) %
(required for executables) esp
(stack

text section Memory-mapped region for
A shared libraries

I
Run-time heap
(created by malloc)
Read/write segment Loaded
| e (data, bss) from
the
Read-only segment || saccutable
Section header table (.init, .text, .rodata) file

. 0x08048000
(required for relocatables)

0

