Inheritance in C++

Bryce Boe
2012/08/28
CS32, Summer 2012 B



Overview

* Assignment Operator

* Inheritance
— Descendants and Ancestors
— Instance variables and methods
— Protected
— Constructors
— Calling ancestor functions

— Polymorphism



Overloading Assignment Operator

* Used when assigning an object to another
object:
— Tuple a_tuple, b_tuple(5);
— a_tuple =b_tuple;

void operator =(const Tuple &other);
Tuple& operator =(const Tuple &other);



Inheritance

Classes can extend existing classes

Member variables and member functions are
inherited by the extending class

An inheriting class is called a child class,
derived class, or subclass

The inherited calss is called a parent class,
base class, or superclass.



How to inherit

class NamedTuple: public Tuple {



Ancestors and Descendants

* Any class that inherits directly or indirectly
from some class is said to be a descendant of
that class

— Cinherits B which inherits A
 Both C and B are descendants of A

* Any class which has descendants, is said to be

an ancestor of those classes

— Cinherits B which inherits A
 Ais an ancestor to both B and C



Constructors are not inherited

e Constructors need to be redefined (you
probably want to anyway as you’ll likely add
instance variables to a new class)

Exception: If no constructors are defined in the
child-class, then it will inherit the default
constructor



Instance Methods and Variables

 Child classes inherit both instance methods
and variables

* Private instance methods are unusable as they
cannot be invoked

* Private instance variables still store data, but

they can only be used via accessors and
mutators



Protected Keyword

* Declaring variables as protected in the parent
class, allows descendant classes to access
them directly



Redefining Instance Methods

* |Instance methods can be redefined in child

classes
The method just needs to be declared and
defined in the context of the child class

Note: Function names only have to be declared
if new or being redefined



Destructor

* The parent class destructors are automatically
invoked after the child class destructors



virtual keyword

* The virtual keyword allows for dynamic
dispatch

* Dynamic dispatch means to lookup the
appropriate function to call at run-time

e Useful when working only with ancestor class
types, but you want to call the specific
descendant class function



More on Virtual

* The virtual property is inherited, thus it isn’t
required to have virtual in the function
declaration when overriding a method



Polymorphism

* The use of the virtual keyword is
polymorphism

 The behavior of an instance changes
depending on its actual implementation



