Classes in C++

Bryce Boe
2012/08/15
CS32, Summer 2012 B



Overview

Finish Sorting recap

Thinking object oriented recap

Classes in C++

Building a class in C++ (real time demo)



go
a
O
O
P
h
)
S

0}
)

Sorting recap

Merge sort
Heapsort
Quicksort




Thinking object oriented recap

* Language as an influence of thought process

* OO concepts
— Separation of interface and implementation
— Information hiding

— Inheritance

* Writing reusable code



Exciting Note for Today

* The gcc compiler now requires C++ to build

— Essentially means parts of the gcc compiler are
written in C++

* http://gcc.gnu.org/git/?
p=gcc.git;a=commit;h=2b15d2ba7eb3a25dfbl
5a7300f4ee7ald41ee8539



Structures

e Structures provide a way to organize data

e Structures in C++ are essentially classes, not
true in C



Classes

* An object is a variable that has member
functions (instance methods)

* Aclassis a data type whose variables are
objects

 Class

— Describe the kind of values the variables hold
(state)

— Describe the member functions (behavior)



Terminology

The book uses member to mean a particular
instance of a class

The book uses members to mean attributes of
a class (variables and methods)

Function and method are somewhat used
interchangeably

Similar:
— member variable = instance variable
— member method = instance method



Classes

* Provide encapsulation

— Combining a number of items, such as variables
and functions, into a single package, such as an
object of some class (or instance of the class)



Scope Resolution Operator

* ClassName::method name

» Used to identify the scope, class in this case,
that the method belongs to as there may be
more than 1 instance of method name

* Scope resolution isn’t necessary if you are also
a member of that class



Data Hiding

Declaring member (instance) variables as

private, why?

— Assists in separation of implementation and
interface

— Allows for input validation and state consistency



Declaring Private attributes

class Date {
int day; // this section is private by default
int month; // though you should be explicit
public:
void output_date();
private:
Int year;

5



Accessor methods

* Sometimes called getters

* |Instance methods that return some data to
indicate the state of the instance

e Typically prefixed with get

int Date::get _day() { return day; }



Mutator methods

e Sometimes called setters

* |[nstance methods that update or modify the
state of the instance

e Typically prefixed with set

void Date::set_day(intd) {day =d; }



Overloading Instance Methods

* Defining methods of a class with the same
name, but different parameters

void Date::update date(intd, int m, inty){...}
void Date::update date(Date &other) {...}



Class Constructors

A constructor is used to initialize an object

It must:
— Have the same name as the class
— Not return a value

Constructors should be declared public

— To ponder: what does it mean to have a non-
public constructor?

Always define a default constructor



Example

class Date {
public:
Date(int d, int m, inty);
Date(); // default constructor
private:
int day, month, year;

5



Two ways to initialize variables

* From the constructor declaration
(implementation)

e Method 1: Initialize in the constructor
initialization section

Date::Date() : day(0), month(0), year(0) {}
* Method 2: In the method body
Date::Date() {

day = 0; month =0; year =0; }




Example Constructor Usage

Date a (10, 10, 11); // use the 3 param
constructor

Date b; // correct use of default constructor

Patee{}:-- // incorrect use of default constructor
// This is actually a function definition

Date d = Date(); // valid, but inefficient



Anonymous Instances

e Aninstance thatis not bound to a variable
Date d = Date();

* |n the above example there are actually two
instances of class Date
— The first is represented by d
— The second is the anonymous instance represented by
Date()
* The assignment operator is used to transfer
information from the anonymous instance to d



Abstract Data Types

* A formal specification of the separation of
implementation and interface

* Developer can use ADTs without concern for
their implementation

* Using classes, you can define your own ADTs
— This allows for reusable code



Tips for writing ADTs

* Make all the member variables private
attributes of the class

* Provide a well defined public interface to the
class and don’t change it

 Make all helper functions private



Intro to Inheritance in C++

* Derived (aka child or sub) classes take on
(inherit) the attributes of the parent (aka base
or super) class

class Timestamp : public Date {



For Lab?2

e Read “The const Parameter Modifier” section
— Page 620 in the textbook

int Date::days_until(const Date& other) const{...}

e const for parameters
— Means the method cannot modify the parameter

e const at the end of the function declaration

— Means that the method cannot not modify its
own instance’s state




For Monday

* Read chapter 11 in the C++ book

— Again, think about OO design themes in the C++
context

* The textbook is available in the library



Building a class demo



