Shells and Processes

Bryce Boe
2012/08/08
CS32, Summer 2012 B

Outline

Operating Systems and Linux Review
Shells

Project 1 Part 1 Overview

Processes

Overview for Monday (Sorting Presentations)

OS Review

* Operating systems
— Manages system resources: cpu, memory, |/0
— Types: single/multi-user and single/multi-process
— Provides fairness, security

Self Check Questions

 What is the primary benefit of a multi-process
OS over a single process OS? How is this
accomplished?

* Explain the difference between
multiprogramming and multitasking

Self Check Answers

 What is the primary benefit of a multi-process
OS over a single process OS? How is this
accomplished?
— Increased resource utilization (primarily of the

CPU) accomplished by scheduling other processes
when the currently running process requires /0

Self Check Answers cont.

* Explain the difference between
multiprogramming and multitasking

— Multiprogramming systems switch the running
process when that process requires |/0O.

— Multitasking systems periodically switch the
running process after some (typically minute)
period of time

Linux Architecture

Set of data structures (usually on a disk) that holds
directories of files. All devices are accessed like
they are files on disk (open/close, read/write).

User commands mcludes
executable programs and scripts

The shell mterprets user User commands -
commands. It 15 responsible for Shell -
finding the commands and starting

their execution. Several different File systems

shells are available. “Bash” 1s
popular and what we will use.

Device drivers
Hardware

Software that makes use 0f all all of the
The kernel manages the hardware functionality that each device provides.
resources for the rest of the Drivers implement the file interface (open/close,
system read/write) so that processes can access the device(s).
One driver can support 1+ similar devices.

Shells

What is a shell?

* Ashell is a program that provides the
interface between the user and the operating
system

* Can be used to tell the OS to:
— Execute programs (as processes)
— Stop, or pause processes
— Create, copy, move, remove files

— Load or unload device drivers

Types of Shells

* Command line shells:
— Provide a textual input as the user-interface

— Bourne shell (sh), C shell (csh), Bourne-Again shell
(bash), cmd.exe

* Graphical shells
— Provide a point-and-click type interface
— Windows shell, Gnome, KDE, Xfce, Xmonad

Login Shell

* The shell presented to the user upon login
* Typically changeable on Linux via chsh

Configuration Files

* Unix shells typically load configuration settings
on launch
— Bourne shell: ~/.profile
— C shell: ~/.login, ~/.cshrc
— Bash: ~/.bashrc, ~/.bash_profile
e Useful to adjust environment variables such as

the PATH

— Examples are provided in the reader on page 29
and 30

Unix Shells

Contain built-in commands
— cd, eval, exec, exit, pwd, test, umask, unset

Launch external programs
— cat, cp, mv, touch, wc

Continue executing until their input stream is
closed via <ctrl+d>

External commands are searched for
according to the PATH environment variable

Launching shells

e Shells can be launched within shells (they’re
just applications after-all)

— Demo pstree with nested shells

* Shells process commands from stdin
— Run: echo "echo foo" | sh

— Combined with stdin redirection we have the
ability to write shell scripts

— More on shell scripts in lab1 and project 1

Working with the PATH

 The PATH environment variable specifies
directories containing executable file

e Commands to demo:
— echo SPATH
— which -a <PROG_NAME>

* Bad things can happen with ‘.” is on the PATH
— Shell script wrapper program

Shell meta characters

* Support for globbing

— Filename expansion using:
e * - wildcard to match 0 or more characters
* ? —wildcard to match exactly one character

* []— matches one character if it’s contained in the
character list

— [0-9A-Za-z] will match a single character if it’s alphanumeric

* Home directory substitution via ™

Project 1 Part 1

* Automated testing bourne script
— Usage: test_it.sh DIRECTORY

* Given a directory as input run tests against
programs specified by DIRECTORY’s
subdirectory names
— Individual test inputs are files prefixed with

“input_” and should be compared with the
corresponding “output_” file

DIRECTORY Hierarchy

Execute: ./test_it.sh

test_root

Project 1 Part 1 Demo

Processes (in Linux)

A process is a program in execution
— Copied to memory and assigned a process ID (PID)

Multiple processes run simultaneously via
multitasking

Processes are created when an existing
process makes a fork or clone system call

Processes can have different scheduling
priority (nice values in Linux)

Simple Fork Example

Running sort from bash

Step 1: Shell uses fork to Step 2: Child uses exec to overwrite itself with
create a child the executable file corresponding to
the sort command.

@ Parent @ Parent

<1 fork

@ Child @ exec sort

Step 3: sort starts execution while ‘bash’ waits for the command to finish. When sort
finishes, the child process terminates and ‘bash’ starts execution again, waiting
for the user to give it another command to execute.

Parent

Running a shell script that runs find

Select Process Attributes

The column names as listed in ps -1 output
S — the state of the process

°|D — the process id

PPID — the parent process id

JID — process owner’s user id

WCHAN —the event a non-running process is
waiting for

Process Hierarchy

init (now systemd) is the root of all processes (PID 1)

The process hierarchy's depth is limited only by available
virtual memory

A process may control the execution of any of its descendants
— Can suspend or resume it

— Can even terminate it completely

By default, terminating a process will terminate all of its
descendants too

— So terminating the root process will terminate the session

Example Process Hierarchy

kflushd O kswapd O mingetty () mingetty () mingetty () mingettyO httpd O crond O inetd O

login ()
bash ()

sort () find ()

Process States

A process exist in a number of different states

Ready

— The process is ready to be scheduled
Running

— The process is currently runny

Swapped

— Part or all of the process’s memory is on disk

Zombie
— The parent of the process no longer exists

Process States Diagram

Pending I/O
Child to exit

Slee.ping

Observing Process States and

Hierarchy
o pS
— Output a snapshot of the running process (many
options)
e pstree
— Output a text-based view of the process hierarchy
tree
e top

— A terminal-based process monitoring program

Process Exit Status

* Each process exits with some status 0-255
— 0 is typically used to indicate success

— All other numbers are used to indicate some
“error” condition that is application specific

— In C/C++ the int return value from the main is the
exit status

Processes and the shell

* The shell can run processes in the foreground
(fg) and the background (bg)

* Multiple processes can be run in succession or
in parallel via a single command

Foreground and background

* The shell normally runs processes in the
foreground

* Launch a process in the background via &
— sleep 500 &

e See a list of background processes (jobs)
associated with your current shell via

— jobs

Background -> foreground

* Type: fg (note there must be a background
processes running)

* You can also explicitly foreground a specific
job by number:

— fg %3

Foreground -> background

* When a process is running, suspend it:
—<ctrl>+1z

— This will bring you back to the terminal

 Then run bg to resume the process running in
the background

* As with the fg command, you can provide an
explicit job number:

— bg %2

Sequentially executing programs

e Separate via ; on the command line
— sleep 5; Is; sleep 5; Is

— Processes run regardless of previous process’s exit
status

* Conditionally execute sequentially based on
exit status: separate via &&
—sleep 5 && Is -| foo && sleep 5 && Is —|

— Command stops when a non-zero exit status is
returned

Executing programs in parallel

e Separate via &, the background process
indicator

— echo foo & echo bar & echo somethingelse &

— If process is running in the background, the
command’s exit status will be zero

Mix and match

* sleep 5; echo foo& echo bar & ; Is
— sleeps 5 seconds
— Concurrently runs echo foo, echo bar and Is

* Both echo commands run in the background
* |srunsin the foreground

For Monday

* Prepare 10-15 minute presentation on an
assigned sorting algorithm
— Provide a number of examples and detail and possible
corner cases
* 1 volunteer will be asked to present each sorting
algorithm

— If no volunteers, then someone will be picked
randomly

* Complete instructions will be posted on Piazza
sometime before Thursday’s lab

