Operating Systems

Bryce Boe
2012/08/07
CS32, Summer 2012 B

Outline

 HW1 Review
* Operating Systems Overview
* Linux Software Architecture

HW1 Review

26 submissions, nearly all 14/14

One issue with the grader feedback:

— Lack of newlines at the end of the input is hard to
detect, this has been corrected

Going forward emailed submissions will not
be accepted

atoi v. stringstream example
— See str_to_int.cpp

Operating Systems Overview

System Resources

e Central Processing Unit (CPU)

* Main memory, aka random access memory
(RAM)

* Input/Output (I/O) devices
— Keyboard, mouse, camera

— Storage devices, network, printers, display

Hardware and the operating system

Progra m Reqgister .
Devices alert the CPU that they have

counter file ‘ :
a request (keyboard input, disk read
System bus Memary bus return) via an interr upt (Signal sent

on the bus). This interrupts what the
CPU is doing so that it can respond to
(execute code for) the request
(interrupt handler).

-

Expansion slots for
other devices such
as network adaptors

Kk MyProg.cop (text file)
' myprog (binary file)

Brief CPU Processing Overview

* Program instructions and data are in memory

— Program Counter (PC) register in CPU keeps track of
the current instruction location

* CPU stores the next few instructions in cache
— Some needed data is also cached
— Multiple layers of cache can be employed

 CPU components typically share the same data
width (number of bits)

— Registers, Arithmetic logic unit (ALU), buses (wires)

Processing Continued

e The CPU is dumb

— It simply continues executing the next instruction
until interrupted

* Fetch -> decode -> execute (repeat)
— Can only really perform basic arithmetic
* Question:

— How can we manage these operations and
resources effectively?

Answer

* By using operating system!

Purpose of the Operating System

Facilitate launching applications

Manage system resources

Provide security

Provide inter-process communication (IPC)

Additionally OS may:
— Provide developer libraries

— Provide program generation tools
* Text editors, compilers

Two ways to consider the OS

* Bottom-up view
— OS is software that allocates and de-allocates computer
resources — efficiently, fairly, orderly and securely

* Top-down view

— OS is software that isolates us from the complications of
hardware resources

— In other words, an OS is an application programmer’ s and
a user’s interface to computer operations

| Application/user programs (processes) I software

Operating System
Main Memory ‘ 1/0 devices | - hardware

Types of Operating Systems

* Single User, Single Process
— Dos, Windows 3.1

e Single User, Multiprocess
— Windows 95/98/XP

* Multiuser, Multiprocess
— Linux, OS X, Windows Server
— Requires fairness and and security considerations

Consider device latencies/access times

e (all times approximate)

 CPU: 3 cycles per ns

* L1 Cache: 1 ns (3 CPU cycles)

e L2 Cache:4 ns (12 CPU cycles)

e RAM: 80 ns (240 CPU cycles)

e SSD: 0.1 ms (300,000 CPU cycles)

e HDD: 5 ms (15,000,000 CPU cycles)

Running multiple processes

 Multiprogramming

— The yielding of the CPU to another process when
performing 10

* Multitasking (aka timesharing)

— The forced yielding of processes at small intervals
to give the impression of concurrently running
processes

Multiprocessing benefits

* Increase CPU throughput
— Perform other operations while waiting on /0

* Increase resource utilization

— Resources can maintain a queue of tasks so they
always have work to complete

Linux Software Architecture

Brief Unix History

 AT&T Bell Labs — System V standard
— 1969-70: Ken Thompson wrote Unix in “B”
— 1972: Dennis Ritchie developed C — a better B
— Unix rewritten in C, 1973
— ... eventually System V, 1983
 UC Berkeley — BSD standard
— Started with a copy of System |V, late 1970s
— Lots of changes/additions in 1980s
— Now FreeBSD

* Open source - Linux, since early 1990s

Unix-born operating systems

FreeBCD

or . NetBSD
SD family l—

> OpenBSD) |

—» BSD (Berkeley Softwarc Distribution)

Bill Joy
| Sun0S (Stanford)

Darwin

[:
: | NextStep 3.3+—— [Irrrrrrrrr
‘ Mac OS 10.4.6

GNU Project GNU

Richard Stallman
»

1
' >_Lmn(

» Minix | Linus Torvalds

Andrew S. Tanenbaum

Unix Time-Sharing System (Bell Labs) 10

Ken Thompson - E 4 ‘
Dennis Ritchie (C language I HP-UX 1liv2
s{axpw 5153

I UnixWare (Univel/SCO) 7.1.4 MPZ‘

lRIXlSGI) 6.5 30~

Source: The Abraham Zelmanov Journal
http://zelmanov.ptep-online.com/
linux.html

Unix Philosophy

 Small is beautiful
— Each program does just one thing

— Pipe commands (or use successive functions in C) to
accomplish more complicated things

— Less typing is best (using 1970s computers)

e That’ s why so many commands are short (Is, cp, mv, ...)

e Users/programmers know what they are doing

— That’s what makes the brevity sufficient
— Means very few restrictions (or safety nets) apply

Linux

Started in 1991 by Linus Torvalds

Open Source, GPL
— Free to use, modify, distribute

— Theoretically allows bugs and security holes to be
found faster

Multi-user, Multitasking OS

Support for both command line and graphical
user interfaces

Linux Distributions

A Linux distribution is a collection of user-level
applications and libraries built around the
Linux kernel

 Well known distributions:
— Ubuntu/Debian
— CentOS/Fedora/RedHat

Linux Architecture

Set of data structures (usually on a disk) that holds
directories of files. All devices are accessed like
they are files on disk (open/close, read/write).

User commands mcludes
executable programs and scripts

The shell mterprets user User commands -
commands. It 15 responsible for Shell -
finding the commands and starting

their execution. Several different File systems

shells are available. “Bash” 1s
popular and what we will use.

Device drivers
Hardware

Software that makes use 0f all all of the
The kernel manages the hardware functionality that each device provides.
resources for the rest of the Drivers implement the file interface (open/close,
system read/write) so that processes can access the device(s).
One driver can support 1+ similar devices.

Kernel Services

* File management
— Permissions and access control
— Manages files and folders

* Process Management and IPC

— Process scheduling
 Starting, stopping, suspending, swapping

— |PC: pipes, named pipes, sockets

Kernel Services cont.

* Memory Management

— Address spaces for processes

* Provides isolation between processes and the kernel
(hopefully)

— Manages allocation and de-allocation of memory
to processes

* Disk scheduling

— Mange how processes be given priority to access
the disk?

CPU Scheduling

Kernel sends interrupt to a process to give
another process a turn to use the CPU

* Processes can give up CPU when they
don’ t need it (e.g. waiting on I/0 deV|ce)

Process1 Process?2

User code

P
rea \ Kernel code - Context switch

User code
Disk Interrupt-> Kernel code . Context switch
Return from read-> User code

Processes request kernel services

e Using system calls (read, write, fork, ...)
— OOP idea: these are the kernel’ s interface

— Processes access devices just like files — that’ s
how they are represented by the kernel, and they
occupy places in the file system

* Use open, close, read, write, release, seek, ...
* Orindirectly, by using shell commands or
libraries/programs that use system calls

A few system calls

open: open a “file”

read: read data from a “file”

write: write data to a “file”

exec: begin executing a new program

fork: start a new process as a copy of the
current one

Example Library Function Chain

e fclose: posix C close file stream function
<stdio.h>

* close: unix close file descriptor function
<unistd.h>

* |Invokes the following system call (assembly)
mov ebx, O # indicate we want to close fd O
mov eax, 6 # system call number 6 is close

int 80h # send interrupt 80 for system calls

For tomorrow

* Get the reader if you don’t already have it

* Finish the first section of the reader

“Introduction to operating systems, Unix and
shells.”

* Begin reading section 3 of the reader
“Processes”

