Course Introduction

Bryce Boe

2012/08/06

CS32, Summer 2012 B

About Me (Bryce Boe)

- Ph.D. Candidate in Computer Science Education
 - Focus on automated assessment
- B.S. in Computer Science from UCSB 2008
- Background in networking and security
- First time teaching

How to make class smoother

- Feedback, feedback, feedback
 - "Bryce, X doesn't make sense"
 - "It might be better if Y"
 - "I can't read your handwriting"
 - "Your going way too fast"

Outline for today

- Review the syllabus
- Demo Piazza
- Overview HW1
- Demonstrate the submission and feedback process

Object Oriented Design and Implementation

 Advanced topics in object-oriented computing. Topics include encapsulation, data hiding, inheritance, polymorphism, compilation, linking and loading, memory management, and debugging; recent advances in design and development tools, practices, libraries, and operating system support.

Course Info

- Instructor: Bryce Boe
 - Office Hours
 - Monday 2:15 3:15 PM, GSL
 - Wednesday 11:15 12:15 PM, GSL
- TA: Saeed Mahani
 - Office Hours
 - Tuesday 2:00 3:00 PM, CSIL
 - Thursday 1:00 2:00 PM, CSIL
- Website: http://cs.ucsb.edu/~cs32

Required Texts

- Problem Solving with C++, 8th edition
 - Walter Savitch
- Computer Science 32 Reader
 - Available at the Alternative Digital Printing

What do you already know?

What you should already know

- C and basic C++
 - Loops and conditionals
 - Pointers
 - Functions
 - Classes
 - Recursion
 - Arrays and linked lists
 - Memory allocation and de-allocation
- Abstract Data Types
 - Stacks and queues
 - Trees, binary search trees, and heaps
 - Hash tables

- By the end of this course, you will be able to use the shell to start processes in all possible input/output redirection states.
- Examples:
 - someprogram < input_file | diff another_file |
 grep "some string" > output_file

 By the end of this course, you will have designed an object-oriented project that demonstrates the use of templates, inheritance, polymorphism, friend classes and operator overloading.

Project 2 will cover each of these topics

 By the end of this course, you will be able to justify the selection of a particular sort algorithm for a given task.

• Sorts:

- $-O(n^2)$
 - Bubble sort, insertion sort, selection sort
 - Quicksort (average: n*log(n))
- O(n*log(n)): Merge sort, heapsort

- By the end of this course, you will be able to step-through the process the operating system performs to load a program into memory.
- System calls:
 - fork, exec, dup, wait

- By the end of this course, you will be able to identify where in a process's memory structure a defined variable is located.
- Segments:
 - text
 - data
 - bss
 - heap
 - stack

Grading Distribution

- 24% Projects (2)
- 24% Labs (5)
- 24% Final (Wednesday Sept. 12)
- 16% Midterm (Wednesday Aug. 22)
- 08% Homework (2)
- 04% Participation

Participation

- Earned by:
 - Participating in class
 - Answering questions on Piazza
 - Responding to questions on Piazza
 - (Maybe) editing questions and answers for clarity on Piazza
- Participation points are relative to the overall class effort

Late Submission Policy

- Grading based off your latest (most recent) submission
- 1% off every 5 minute interval late
- Examples:
 - Submission at 00:00:00-00:04:59, 1% off
 - Submission at 00:45:00-00:49:59, 10% off
 - Submission at 04:05:00-04:09:59, 50% off
 - Submission on or after 08:15:00, 0%

Grading Petitions

- Applies only to tests
- Not required for grading "mistakes"
- Must meet the following conditions:
 - Wait 24 hours after the test was returned to you
 - Provide a written argument that:
 - Clearly states why your answer is suitable for the question
 - Acknowledges your understanding of the expected answer
 - Compares the two

Attendance

- Lectures:
 - Strongly encouraged, not required
- Labs:
 - Required for the first lab (unless already notified)
 - Encouraged but not required for subsequent labs

Academic Integrity Discussion

- Break into groups of 4 or 5
- Discuss the following questions:
 - What constitutes a violation of academic integrity?
 - What sort of collaboration between students are acceptable?
 - Why are we having this discussion?

Excluded Topics

- Topics normally taught in CS32
 - Unix programming tools
 - Program building
 - Libraries
- Topics in textbook not covered
 - Separate compilation and namespaces
 - Exception handling

Course Syllabus

- The official course syllabus is viewable on the course website:
 - http://cs.ucsb.edu/~cs32
- It will be updated as necessary

Online Interaction

- Avoid class-related emails
- Class discussion and online interaction to take place on Piazza
 - https://piazza.com/class#summer2012/cs32
- Piazza allows:
 - You to ask questions anonymously
 - Ask questions privately to the instructor and TA
 - You to respond to questions
 - Edit questions and answers

Piazza Demo

• https://piazza.com/class#summer2012/cs32

Homework 1, FizzBuzz

http://cs.ucsb.edu/~cs32/p/hw1

Submitting your work

Refer to

http://cs.ucsb.edu/~cs32/p/ automated_feedback

- Feedback is sent to your @cs.ucsb.edu email
 - Most likely forwarded to your umail
 - Also try both servers on:
 - https://webmail.engr.ucsb.edu/

Feedback Caveats

- Output produced prior to a segfault will not be shown
 - It will appear as if your program produced no output
 - There is no other indication your program segfaulted
- Trailing whitespace on lines may not be possible to detect
 - You should never have trailing whitespace unless otherwise specified

For tomorrow

- Complete HW1
- Read as much of "Operating systems, Unix and shells" in the Reader as you can

Questions?