Priority Queues and Heaps

Bryce Boe
2013/08/13
CS24, Summer 2013 C

Outline

Thursday Recap
More Tree Properties
Priority Queue

Heaps

O(n?) Sorting Algorithms

e Bubble sort

— Bubble the largest element to the end in each
pass

* |nsertion sort

— Insert the next element into the sorted portion of
the list

e Selection sort

— Find the smallest item and put it in its proper
location

O(nlog(n)) Sort Algorithms

* Merge Sort

— Break the problem up until you have 1 or 2 items
and put them in order

— Merge the sorted lists O(k) where k is the size of
the small lists

—T(n) = 2T(n/2) + O(n) === O(n*log(n)) (masters
theorem)

BST Remove

* |f the node has no children simply remove it

 |f the node has a single child, update its
parent pointer to point to its child and remove
the node

Removing a node with two children

* Replace the value of the node with the largest

value in its left-subtree (right-most
descendant on the left hand side)

* Then repeat the remove procedure to remove
the node whose value was used in the

replacement

Removing a node with two children

-»-» A
A A A A AN

Full Binary Tree

* Full Binary Tree

— A binary tree in which every node has either 0 or 2
children

* Complete Binary Tree

— A binary tree in which ever level is completely
filled save for the last where all items must be
filled from the left-hand-side

Neither complete nor full Complete but not full

Full but not complete Complete and full

1000 ¢

Priority Queue

* Abstract data type with operations similar to
the queue
— enqueue(item, priority)
 Add an item to the queue

— dequeue()

 Remove the item with highest priority from the queue
(FIFO order for items with same priority)

Brainstorm

* Discuss for a few minutes with those near you:

— Come up with two functionally distinct ways to
implement a priority queue

Bounded Priority Queue

Simple trick if the number of priorities is
bounded

Provide one FIFO queue for each priority

Always look for items starting from the
highest queue before proceeding to the next

enqueue: O(1)
dequeue: O(1)

Sorted List Implementation

Use a standard linked-list implementation of a
queue

Modify enqueue such that it places the item in
the appropriate location in the list

enqueue: O(n)
dequeue: O(1)

Tree Implementation

* Construct a tree such that its root is always
the highest priority

* Additionally every subtree has the same
property (parent is of equal or higher priority
than children)

Heap

A complete tree where

each node’s parent has
a higher or equal

priority

Think about it

* Are there any trees that can be both a heap
and a BST?

Heap Insertion (enqueue)

* Place item in the next free location (obey the
completeness property)

e Continue to swap it with its parents until the
ordering property is valid (bubble up)

* enqueue: O(log(n)) — worst cases traverses up
the entire height of the tree

Heap removal (dequeue)

Store the value at the root to return at the
end

Swap the last item in the tree with the root

Continually swap the current node with its
child of highest priority until it is of higher
priority than both children (bubble-down)

dequeue: O(log(n)) — worst cases traverses
down the entire height of the tree

Lab 7

 Write function to test if array is in heap-order
* Arrays are great for storing complete trees
|11 |110|7|9|5|6|4|8|2]|3]|1]

