Trees, Binary Search Trees,
Recursion, Project 2

Bryce Boe
2013/08/01
CS24, Summer 2013 C



Outline

Stack/Queue Review
Trees

Recursion

Binary Search Trees
Project 2



Stack / Queue Review

e Stack operations
— push
— POop

* Queue operations

— enqueue
— dequeue



TREES



Tree Explained

e Data structure composed of nodes (like a
linked list)

e Each node in a tree can have one or more
children (binary tree has at most two children)



Binary Tree




Tree Properties

The root is the top-most node of the tree (has
no parent)

A node’s parent is the node immediately
preceding it (closer to the root)

A node can have at most two children or child
nodes

A leaf is a node with no children



More Properties

A node’s ancestors are all nodes preceding it

* A node’s descendants all all nodes succeeding
it

* A subtree is the complete tree starting with a
given node and including its descendants



Tree properties

— oot

— parenl
e |aft-child

right-subtree

— |left-subtree




More Properties

 The depth of a node is how far it is away from
the root (the root is at depth 0)

* The height of a node is the maximum distance
to one of its descendent leaf nodes (a leaf
node is at height 0)

* The height of a tree is the height of the root
node



What is the depth of G?




What is the depth of D?




What is the height of C?




What is the height of B?




What is the height of the tree?




What nodes make up A’s right
subtree?




RECURSION



What is recursion?

* The process of solving a problem by dividing it
into similar subproblems

 Examples
— Factorial: 51 =5*41=5* 4 * 3|
— Fibonacci Numbers: F(N) = F(n-1) + F(n-2)
— Length of linked list: L(node) = 1 + L(node->next)



Factorial

* Base Case:
N
 General Case
— F(n) =n * F(n-1)



Factorial

int factorial(n) {
if (n<1)throw 1; // Error condition
else if (h ==1) // Base Case
return 1;
else // General Case
return n * factorial(n — 1);



Fibonacci Numbers

* Base Cases:
—F(0) =0
~F(1)=1
 General Case:
— F(n) = F(n-1) + F(n-2)



Linked List Length

* Base Case:
— Length(last node) =1

* General Case:

— Length(node) = 1 + Length(node->next);



Linked List Length (option 1)

int length(Node *n) {
if (n == NULL) // Base Case
return O;
else // General Case
return 1 + length(n->next);



Linked List Length (option 2)

int length(Node *n) {
if (n == NULL) throw 1; // Error condition
else if (n->next == NULL) // Base Case
return 1;
else // General Case
return 1 + length(n->next);



Recursion and the Stack Segment

* main calls Factorial(3)




C++ Examples

* See
— week6/recursion.cpp
— week6/trees.cpp



BINARY SEARCH TREES



Binary Search Trees

* A tree with the property that the value of all
descendants of a node’s left subtree are
smaller, and the value of all descendants of a
node’s right subtree are larger






BST Operations

* insert(item)
— Add an item to the BST

* remove(item)
— Remove an item from the BST

e contains(item)

— Test whether or not the item is in the tree



BST Running Times

e All operations are O(n) in the worst case
— Why?
* Assuming a balanced tree (CS132 material)
— insert: O(log(n))
— delete: O(log(n))
— contains: O(log(n))



BST Insert

* |f empty insert at the root

* |f smaller than the current node
— If no node on left: insert on the left
— Otherwise: set the current node to the lhs
(repeat)
 |f larger than the current node
— If no node on the right: insert on the right

— Otherwise: set the current node to the rhs
(repeat)



BST Contains

Check the current node for a match

ft
ft
ft

ne value is smaller, check the left subtree
ne value is larger, check the right subtree

ne node is a leaf and the value does not

match, return False



BST iterative traversal

ADT items;

items.add(root); // Seed the ADT with the root

while(items.has_stuff() {
Node *cur = items.random_remove();
do_something(cur);
items.add(cur.get_lhs()); // might fail
items.add(cur.get_rhs()); // might fail



BST Remove

* |f the node has no children simply remove it

 |f the node has a single child, update its
parent pointer to point to its child and remove
the node



Removing a node with two children

* Replace the value of the node with the largest

value in its left-subtree (right-most
descendant on the left hand side)

* Then repeat the remove procedure to remove
the node whose value was used in the

replacement



Removing a node with two children

-»-» A
A A A A AN




Project 2

* Add more functionality to the binary search
tree

— Implement ~Tree()
— Implement remove(item)
— Implement sorted_output() // Requires recursion

— Implement distance(item _a, item_Db);

— Possibly implement one or two other functions
(will be added later)



