Trees, Binary Search Trees, Recursion, Project 2

Bryce Boe

2013/08/01

CS24, Summer 2013 C

Outline

- Stack/Queue Review
- Trees
- Recursion
- Binary Search Trees
- Project 2

Stack / Queue Review

- Stack operations
 - push
 - pop
- Queue operations
 - enqueue
 - dequeue

TREES

Tree Explained

- Data structure composed of nodes (like a linked list)
- Each node in a tree can have one or more children (binary tree has at most two children)

Binary Tree

Tree Properties

- The root is the top-most node of the tree (has no parent)
- A node's parent is the node immediately preceding it (closer to the root)
- A node can have at most two children or child nodes
- A leaf is a node with no children

More Properties

- A node's ancestors are all nodes preceding it
- A node's descendants all all nodes succeeding it
- A subtree is the complete tree starting with a given node and including its descendants

Tree properties

More Properties

- The depth of a node is how far it is away from the root (the root is at depth 0)
- The height of a node is the maximum distance to one of its descendent leaf nodes (a leaf node is at height 0)
- The height of a tree is the height of the root node

What is the depth of G?

What is the depth of D?

What is the height of C?

What is the height of B?

What is the height of the tree?

What nodes make up A's right subtree?

RECURSION

What is recursion?

- The process of solving a problem by dividing it into similar subproblems
- Examples
 - Factorial: 5! = 5 * 4! = 5 * 4 * 3!
 - Fibonacci Numbers: F(N) = F(n-1) + F(n-2)
 - Length of linked list: L(node) = 1 + L(node->next)

Factorial

- Base Case:
 - -F(1)=1
- General Case
 - -F(n) = n * F(n-1)

Factorial

```
int factorial(n) {
     if (n < 1) throw 1; // Error condition
      else if (n == 1) // Base Case
            return 1;
      else // General Case
            return n * factorial(n - 1);
```

Fibonacci Numbers

Base Cases:

$$-F(0)=0$$

$$-F(1)=1$$

General Case:

$$- F(n) = F(n-1) + F(n-2)$$

Linked List Length

- Base Case:
 - Length(last node) = 1
- General Case:
 - Length(node) = 1 + Length(node->next);

Linked List Length (option 1)

```
int length(Node *n) {
    if (n == NULL) // Base Case
        return 0;
    else // General Case
        return 1 + length(n->next);
}
```

Linked List Length (option 2)

```
int length(Node *n) {
     if (n == NULL) throw 1; // Error condition
     else if (n->next == NULL) // Base Case
           return 1;
     else // General Case
           return 1 + length(n->next);
```

Recursion and the Stack Segment

main calls Factorial(3)

main

Factorial(3)

Factorial(2)

Factorial(1)

C++ Examples

- See
 - week6/recursion.cpp
 - week6/trees.cpp

BINARY SEARCH TREES

Binary Search Trees

 A tree with the property that the value of all descendants of a node's left subtree are smaller, and the value of all descendants of a node's right subtree are larger

BST Example

BST Operations

- insert(item)
 - Add an item to the BST
- remove(item)
 - Remove an item from the BST
- contains(item)
 - Test whether or not the item is in the tree

BST Running Times

- All operations are O(n) in the worst case
 - Why?
- Assuming a balanced tree (CS132 material)
 - insert: O(log(n))
 - delete: O(log(n))
 - contains: O(log(n))

BST Insert

- If empty insert at the root
- If smaller than the current node
 - If no node on left: insert on the left
 - Otherwise: set the current node to the lhs (repeat)
- If larger than the current node
 - If no node on the right: insert on the right
 - Otherwise: set the current node to the rhs (repeat)

BST Contains

- Check the current node for a match
- If the value is smaller, check the left subtree
- If the value is larger, check the right subtree
- If the node is a leaf and the value does not match, return False

BST iterative traversal

```
ADT items;
items.add(root); // Seed the ADT with the root
while(items.has stuff() {
     Node *cur = items.random remove();
     do something(cur);
     items.add(cur.get_lhs()); // might fail
     items.add(cur.get_rhs()); // might fail
```

BST Remove

- If the node has no children simply remove it
- If the node has a single child, update its parent pointer to point to its child and remove the node

Removing a node with two children

- Replace the value of the node with the largest value in its left-subtree (right-most descendant on the left hand side)
- Then repeat the remove procedure to remove the node whose value was used in the replacement

Removing a node with two children

Project 2

- Add more functionality to the binary search tree
 - Implement ~Tree()
 - Implement remove(item)
 - Implement sorted_output() // Requires recursion
 - Implement distance(item_a, item_b);
 - Possibly implement one or two other functions (will be added later)