More C++

Bryce Boe
2013/07/18
CS24, Summer 2013 C



Outline

* Project 1 Review
 Finish C++ Introduction



PROJECT 1 REVIEW



Sample Solution

* <In class explanation of sample code>
— Solution will NOT be posted



C++ INTRODUCTION CONTINUED



Data Hiding

Declaring member (instance) variables as

private, why?

— Assists in separation of implementation and
interface

— Allows for input validation and state consistency



Declaring Private attributes

class Date {
int day; // this section is private by default
int month; // though you should be explicit
public:
void output_date();
private:
Int year;

5



Accessor methods

* Sometimes called getters

* |Instance methods that return some data to
indicate the state of the instance

e Typically prefixed with get

int Date::get _day() { return day; }



Mutator methods

e Sometimes called setters

* |[nstance methods that update or modify the
state of the instance

e Typically prefixed with set

void Date::set_day(intd) {day =d; }



Overloading Instance Methods

* Defining methods of a class with the same
name, but different parameters

void Date::update date(intd, int m, inty){...}
void Date::update date(Date &other) {...}



Class Constructors

A constructor is used to initialize an object

It must:
— Have the same name as the class
— Not return a value

Constructors should be declared public

— To ponder: what does it mean to have a non-
public constructor?

Always define a default constructor



Example

class Date {
public:
Date(int d, int m, inty);
Date(); // default constructor
private:
int day, month, year;

5



Two ways to initialize variables

* From the constructor declaration
(implementation)

e Method 1: Initialize in the constructor
initialization section

Date::Date() : day(0), month(0), year(0) {}
* Method 2: In the method body
Date::Date() {

day = 0; month =0; year =0; }




Example Constructor Usage

Date a (10, 10, 11); // use the 3 param
constructor

Date b; // correct use of default constructor

Patee{}:-- // incorrect use of default constructor
// This is actually a function definition

Date d = Date(); // valid, but inefficient



Anonymous Instances

e Aninstance thatis not bound to a variable
Date d = Date();

* |n the above example there are actually two
instances of class Date
— The first is represented by d
— The second is the anonymous instance represented by
Date()
* The assignment operator is used to transfer
information from the anonymous instance to d



Finish Example from Tuesday

* <In class completion of converting struct Date
to class Date (encapsulation.cpp)>



