Individual Testing, Big-O, C++

Bryce Boe
2013/07/16 ©
CS24, Summer 2013 C



Outline

IRB Consent Forms
Project 1 Questions
Individually Testing ADTs
Big-O Examples

C++ Introduction



PROJECT 1 QUESTIONS?



INDIVIDUAL TESTING



| expect that you

e are able write your own C program from
scratch and compile the program

e are able to include a library and use its
functions and compile the library

e can think of and write test cases for those
functions



Review: The simplest C Program

int main() {
return O;

Save as: simple.c (or something else)
Compile via: clang simple.c



Review: A simple program to utilize
the List ADT

#include “array_list.h”
int main() {
struct List *tmp = list_construct();
// Insert testing code here (adding/removing items)
list_destruct(list);
return O;

}

Save as: my_test_list.c
Compile as: clang my_test_list.c array_list.c



Testing the list ADT

* <In class creation of my_test.c>



BIG-O REVIEW AND EXAMPLES



Recall: Common Ordered Complexities

 O(1) — constant time

* O(log(n)) — logarithmic time

* O(n)—linear time

* O(nlog(n)) — linearithmic time
* O(n?) — quadratic time

* O(2") — exponential time
 O(n!)—factorial time



O(?)

int a[1024]; // assume allocated

U s oW
return a[2];

else

return a[0];



O(?)

int a[4]; // assume allocated
int n = sizeof(a) / sizeof(int);

for (inti=0;i<n; ++i)

sum += ali];
return sum;



O(?)

int a[4]; // assume allocated

return a[0] + a[1] + a[2] + a[3];




O(?)

int a[1024]; // assume allocated
int n = sizeof(a) / sizeof(int);

for (inti=0;i<n; ++i)

for (intj=0;j < n; ++j)
if (a[i] == alj])
++dups;



O(?)

int a[1024]; // assume allocated
int n = sizeof(a) / sizeof(int);

for (inti=0;i<n; ++i)

for (intj=1i;j<n; ++j)
if (a[i] == alj])
++dups;



C++ INTRODUCTION



Why C++?

Problems with C
— Has a single global namespace

— Cannot use the same name for functions with
different types (e.g., min(int, int) and min(double,
double)) — called overloading

— Difficult to minimize source-code repetition for
similar functions with different types



Some Differences

#tinclude <stdio.h> = #include <iostream>
— Or if you want fprintf, etc use #include <cstdio>

printf(“Hello\n”); = cout << “Hello\n”;

Rather than defining a struct which only
contains data, define a class which contains
data and methods on the data

throw exceptions rather than use return
values to represent error cases



Classes

* Provide encapsulation

— Combining a number of items, such as variables
and functions, into a single package, such as an
object of some class (or instance of the class)



Scope Resolution Operator

* ClassName::method name

» Used to identify the scope, class in this case,
that the method belongs to as there may be
more than 1 instance of method name

* Scope resolution isn’t necessary if you are also
a member of that class



Data Hiding

Declaring member (instance) variables as

private, why?

— Assists in separation of implementation and
interface

— Allows for input validation and state consistency



Declaring Private attributes

class Date {
int day; // this section is private by default
int month; // though you should be explicit
public:
void output_date();
private:
Int year;

5



Accessor methods

* Sometimes called getters

* |Instance methods that return some data to
indicate the state of the instance

e Typically prefixed with get

int Date::get _day() { return day; }



Mutator methods

e Sometimes called setters

* |[nstance methods that update or modify the
state of the instance

e Typically prefixed with set

void Date::set_day(intd) {day =d; }



Overloading Instance Methods

* Defining methods of a class with the same
name, but different parameters

void Date::update date(intd, int m, inty){...}
void Date::update date(Date &other) {...}



Class Constructors

A constructor is used to initialize an object

It must:
— Have the same name as the class
— Not return a value

Constructors should be declared public

— To ponder: what does it mean to have a non-
public constructor?

Always define a default constructor



Example

class Date {
public:
Date(int d, int m, inty);
Date(); // default constructor
private:
int day, month, year;

5



Two ways to initialize variables

* From the constructor declaration
(implementation)

e Method 1: Initialize in the constructor
initialization section

Date::Date() : day(0), month(0), year(0) {}
* Method 2: In the method body
Date::Date() {

day = 0; month =0; year =0; }




Example Constructor Usage

Date a (10, 10, 11); // use the 3 param
constructor

Date b; // correct use of default constructor

Patee{}:-- // incorrect use of default constructor
// This is actually a function definition

Date d = Date(); // valid, but inefficient



Anonymous Instances

e Aninstance thatis not bound to a variable
Date d = Date();

* |n the above example there are actually two
instances of class Date
— The first is represented by d
— The second is the anonymous instance represented by
Date()
* The assignment operator is used to transfer
information from the anonymous instance to d



Abstract Data Types

* A formal specification of the separation of
implementation and interface

* Developer can use ADTs without concern for
their implementation

* Using classes, you can define your own ADTs
— This allows for reusable code



Tips for writing ADTs

* Make all the member variables private
attributes of the class

* Provide a well defined public interface to the
class and don’t change it

 Make all helper functions private



