Linked Structures, Project 1:
Linked List

Bryce Boe
2013/07/11
CS24, Summer 2013 C



Outline

Separate Compilation Review
“Things” from Lab 3

Linked Structures

Project 1 Linked List Walk Through



SEPARATE COMPILATION REVIEW



Questions

 Why should you never #include a “.c” file?
— Doing so doesn’t allow for separate compilation

 What is the purpose of the “#ifndef ... #define
... #endif” guard around the content of “.h”

files?

— Avoids structures and functions from being
declared more than once



Another Question

 What is the primary purpose of separate
compilation?
— To reduce subsequent compilation time by
reusing object files



“THINGS” FROM LAB 3



Code reduction tip

* How can we improve the following?

if (size == 0)

return 1;
else

return O;




What’s the potential problem?

struct List *list;
if((list = malloc(sizeof(struct List))) == NULL)
return NULL;
if((list->_items = malloc(2*sizeof(char *))) == NULL)
return NULL;
list-> allocated = 2;

list-> size =0;

return list;



What’s the potential problem?

struct List *list;
if((list = malloc(sizeof(struct List))) == NULL)
return NULL;
if((list->_items = malloc(2*sizeof(char *))) == NULL) {
free(list);
return NULL;
}
list->_allocated = 2;
list->_size = 0;
return list;




String Memory Question

char msg[] = “hello world”
list_ push_back(msg);

Should list_push_back make a copy of the string to
store in the List?

or

Should the “user” be responsible for making a copy
before calling list_push_back when necessary?

list_push_back(strdup(msg));



sizeof(some_pointer)

* Using sizeof works for static arrays:
—int nums|[] =11, 2, 3, 4, 5}
— sizeof(nums) results in 20 (5 ints * 4 bytes)

* Using sizeof does not work for pointers (even
if they are static arrays in a different scope)

— int *nums = malloc(20);

— sizeof(nums) results in 4 as the size of a pointer is
4 bytes (32 bit architecture)



LINKED STRUCTURES



Let’s talk about complexity

 When evaluating data structures and
algorithms we often want to consider

* Time complexity

— How long might an operation take as a function of
the input size in the

* worst case, daverage Case, best case
e Storage complexity

— How much memory is required to complete an
operation



big-O Notation

 We use O(?) to represent the complexity of an
algorithm

* O(1) means the operation requires a constant
time or space requirement (this is the best)
— Accessing a random element in an array

* O(n) means the time (or space) required is
linear with respect to the input size

— Copying an array



Common Ordered Complexities

O(1) — constant time
O(log(n)) — logarithmic time
O(n) —linear time

O(nlog(n)) — linearithmic time
O(n?%) — quadratic time

O(2") — exponential time
O(n!) — factorial time



What’s wrong with using arrays to
store data?

* Arrays require continuous chunks of memory
* Unless the array is full, there is wasted space

 Expanding the array is typically done by
doubling the size

— Worst case time: Have to copy all the existing
items: BIG-O O(n)

— Hint: realloc does this for you (think about how
realloc is implemented)



How long does it take?

Appending an item to a non-full array?
Appending an item to a full-array?
Removing an item from the end of the array?

Removing an item from the beginning of the
array?

Accessing an element in the middle of the



Single-link Node structure

struct Node {
int data;
struct Node * next;



Node allocation walkthrough

Add an initial node
Add another node at the beginning

Add another node at the end
Remove a node at the beginning
Remove a node at the end



PROJECT 1 LINKED WALKTHROUGH



Linked-implementation walk through

struct List™ list_construct()

void list_destruct(struct List *list)

int list_size(struct List *list)

int list_is_empty(struct List *list)

char *list_at(struct List *list, int position)

int *list_push_back(struct List *list, char *ite)

char *list_remove_at(struct List *list, int pos)



