File 1/0O, Project 1: List ADT

Bryce Boe
2013/07/02
CS24, Summer 2013 C



Outline

Memory Layout Review
Pointers and Arrays Example
File 1/O

Project 1 — List ADT



MEMORY LAYOUT REVIEW



Simplified process’s address space

OXFFFFFFFF

0x00000000



How did we get here?

High Memory

* func_foo calls func_blah
* func_blah calls func_bar




What two things does the (simplified)
activation record store?

* Function parameters
e Function local variables



main’s simplified activation record

stared

Total: 20 bytes



How many bytes is the simplified
activation record?

struct Point {
int X, y;

char
5

Int some_tunc(void *something -
struct Point poirh




How many bytes is the simplified
activation record?

struct Point {
int x, y;
char *name;

b

int some_func(void *something) {
struct Point *points;



Think about it

int main() {
char msg[] = “hello”;
char buf[] = “1234567";

char msg2[] = “world”;

}
 What value does buf[8] hold?

 What about msg[7]?



See (pointer_v_array.c)

POINTERS AND ARRAY EXAMPLE



FILEI/O



File 1/O

* |/O stands for input/output

* Provided by the stdio library (stdio.h)

* Allows reading and writing to/from streams
(type: FILE *)
— stdin (read only)

— stdout / stderr (write only)
— named files



stdio.h

* Explore via opengroup: http://
pubs.opengroup.org/onlinepubs/009695399/
basedefs/stdio.h.html

* Explore via ‘man stdio.h” (same info as

opengroup, but not easily searchable or
linkable)



Opening named files and closing
streams

* FILE* fopen(char *filename, char *mode)

— open a file specifying whether to open for
reading, writing, appending, and create or
truncate if desired

* int fclose(FILE *stream) — close an open FILE*

— Flush and close the stream
— Return O on success



Reading from streams

 int fgetc(FILE *stream)

— Returns the next character in the stream or EOF
(this is why it returns an int)

e char *fgets(char *buf, int n, FILE *stream)
— Read at most n-1 bytes from stream into buf
— Also stops when ‘\n’ or EOF is reached
— Terminates buf with the null character ‘\0’



Other read functions

e fread — very useful (especially when input is
unbounded), we won’t use in this class

e fscanf — useful, but tricky, don’t use in this
class
e Functions with similar names less the ‘f

— Uses the stdin stream thus doesn’t require the
stream argument



Writing to streams

* int fputc(int c, FILE *stream)
— Write a single character ¢ to stream

* int fputs(char *buf, FILE *stream)
— Write the null-terminated string in buf to stream

* int fprintf(FILE *stream, char *format, ...)

— Write formatted string to stream making the
specified replacements



SECURITY WARNING

* NEVER do the following:
fprintf(stdout, buf); // bufis some c-string

* Could allow an attacker to inspect and change
your program (format string exploit)

e Use either fputs or fprintf(stdout, “%s”, buf)

 <See bad_format_string.c>



Other write functions

e fwrite — generally very useful, we won’t use in
this class
* Functions with similar names less the ‘f’

— Uses the stdout stream thus doesn’t require the
stream argument



Other useful stream functions

* int feof(FILE *stream)

— Return non-zero if the stream has reached the
end of the file

* int fflush(FILE *stream)

— Force writing any buffered data to the stream

— Flushing typically occurs when a newline is
encountered, thus fflush is often needed when
newlines aren’t used



/O Questions

 Why does fgetc/fputc return/get an integer?

 |f a file with only a single newline at the end is
32 bytes long, how many bytes does the
buffer for fgets require to read the entire file?



More |/O Questions

 When using fgets, how can you determine if
the string is longer than the value of ‘n’ (the
number of bytes to read)

 What will happen if the ‘n” parameter to fgets
is larger than the buffer?



Real-time cat program writing

e <In class creation of copy.c>
— WEe'll finish this next Tuesday



PROJECT 1: LIST ADT



Abstract Data Types

* A container for data
— Container provides a set of operations

— Abstract in that the costumer does not need to
concern themselves with the implementation



Project 1 Purpose

* Implement the List ADT using two distinct
storage models

e Understand the tradeoffs between the two
implementations



List Operations

* Consult the project 1 description for the list of
methods to implement



For Next Tuesday

* Finish reading chapter 1 in the text book (if
you haven’t already)

* Begin reading chapter 3 (might want skim/
read chapter 2) as it’s helpful for project 1

— Note the book uses C++ so (for now) think about
how to do similarin C



