Memory Layout, File I/O

Bryce Boe
2013/06/27
CS24, Summer 2013 C



Outline

 Review HW1 (+command line arguments)
* Memory Layout
* Filel/O



HW1 REVIEW



HW1 Common Problems

Taking input from stdin (via scanf)
Performing failure testing too late
Not handling the O case
Whitespace issues

Others?



HW1 Solution

e <|n-class review of hw1 solution source code>



MEMORY LAYOUT



View from three Levels

 The address space of a process
e Function activation records on the stack
e Data within an activation record



Simplified process’s address space

OXFFFFFFFF

0x00000000



Data Segments

e Code(+)

— Program code

— Initialization data, global and static variables
* Heap

— Memory chunks allocated via malloc

e Stack
— Function activation records



Creating and destroying activation
records

High Memory

Program starts with main
main calls strsafeconcat
strsafeconcat calls strlength
strlength returns
strsafeconcat calls strlength
strlength returns

strsafeconcat returns



Simplified function activation records

e Stores values passed into the function as
parameters

e Stores the function’s local variables



How many bytes is the simplified
activation record?

int main(int argc, char *argv[]) {
char buf[8];
for (inti=0;i<argc; ++i)
buf[i] = argv[i][0];



main’s simplified activation record

stared

Total: 20 bytes



Think about it

int main() {
char msg[] = “hello”;
char buf[] = “1234567";

char msg2[] = “world”;

}
 What value does buf[8] hold?

 What about msg[7]?



Similar but different

int main() {
int x = OxDEADBEEF;
char buf[] = “1234567";

 What value does buf[8] hold?



Inspecting addresses in a program

* <In class review of variables in_memory.c>



FILEI/O



File 1/O

* |/O stands for input/output

* Provided by the stdio library (stdio.h)

* Allows reading and writing to/from streams
(type: FILE *)
— stdin (read only)

— stdout / stderr (write only)
— named files



stdio.h

* Explore via opengroup: http://
pubs.opengroup.org/onlinepubs/009695399/
basedefs/stdio.h.html

* Explore via ‘man stdio.h” (same info as

opengroup, but not easily searchable or
linkable)



Opening named files and closing
streams

* FILE* fopen(char *filename, char *mode)

— open a file specifying whether to open for
reading, writing, appending, and create or
truncate if desired

* int fclose(FILE *stream) — close an open FILE*

— Flush and close the stream
— Return O on success



Reading from streams

 int fgetc(FILE *stream)

— Returns the next character in the stream or EOF
(this is why it returns an int)

e char *fgets(char *buf, int n, FILE *stream)
— Read at most n-1 bytes from stream into buf
— Also stops when ‘\n’ or EOF is reached
— Terminates buf with the null character ‘\0’



Other read functions

e fread — very useful (especially when input is
unbounded), we won’t use in this class

e fscanf — useful, but tricky, don’t use in this
class
e Functions with similar names less the ‘f

— Uses the stdin stream thus doesn’t require the
stream argument



Writing to streams

* int fputc(int c, FILE *stream)
— Write a single character ¢ to stream

* int fputs(char *buf, FILE *stream)
— Write the null-terminated string in buf to stream

* int fprintf(FILE *stream, char *format, ...)

— Write formatted string to stream making the
specified replacements



SECURITY WARNING

* NEVER do the following:
fprintf(stdout, buf); // bufis some c-string

* Could allow an attacker to inspect and change
your program (format string exploit)

e Use either fputs or fprintf(stdout, “%s”, buf)



Other write functions

e fwrite — generally very useful, we won’t use in
this class
* Functions with similar names less the ‘f’

— Uses the stdout stream thus doesn’t require the
stream argument



Other useful stream functions

* int feof(FILE *stream)

— Return non-zero if the stream has reached the
end of the file

* int fflush(FILE *stream)

— Force writing any buffered data to the stream

— Flushing typically occurs when a newline is
encountered, thus fflush is often needed when
newlines aren’t used



/O Questions

 Why does fgetc/fputc return/get an integer?

 |f a file with only a single newline at the end is
32 bytes long, how many bytes does the
buffer for fgets require to read the entire file?



More |/O Questions

 When using fgets, how can you determine if
the string is longer than the value of ‘n’ (the
number of bytes to read)

 What will happen if the ‘n” parameter to fgets
is larger than the buffer?



Real-time cat program writing

e <In class creation of simple_copy.c>



For Tuesday

* Finish reading chapter 1 in the text book



