Project 3, Standard Template
Library (STL)

Bryce Boe
2013/11/25
CS24, Fall 2013

Outline

Priority Queue Review

Project 2 Solution

Project 3 Overview

When should I?

C++ Standard Template Library (STL)

Priority Queue

* Queue-like ADT where each item is assigned a
priority, and the highest priority item is always
dequeued

* Implementations

— 1 queue per priority (fixed number of priorities)

— Build on top of a List with a sorted insert
operation

— Heap

Heap

A complete tree where

each node’s parent has
a higher or equal

priority

Project 2 Solution

* <|n class look at my solution>

PROJECT 3

Project 3 Overview

* Concept: Hospital emergency room log

* Logs when (1) patients arrive, (2) patients are
visited by a doctor, and (3) when patients
CEVE

Input File

Priorities

01 Cough

10 Bleeding

Doctors

Dr. Doctor

Patient Arrivals

08:00 “Patient A” “Head ache” 25
08:00 “Patient B” “Bleeding” 60

Output File

08:00 Patient A arrives

08:00 Patient B arrives

08:00 Dr. Doctor visits Patient B about Bleeding
09:00 Patient B departs

09:00 Dr. Doctor visits Patient A about Head
ache

09:25 Patient A departs

Data Structures to Use

* Queue
— Patient arrivals (1)
— Available doctors (2a)

* Priority Queue
— Patients who are waiting to see a doctor (2b)
— Patients who are currently seeing a doctor (3)

 Hash Table
— Mapping of symptom to priority

Suggested Schedule

By Friday (11/29) — complete the parsing of the
input
— Store arrivals in an arrival queue

— And store priority mapping in a hash table (might
want to complete lab 10 first)

By next Monday — pass the 1 doctor tests

By next Wednesday — pass most of the multiple
doctor tests

By the deadline — handle the corner cases for
100%

WHEN SHOULD I?

When should | use recursion /
iteration?

* Use whatever you are more comfortable with

 Consider:

— Recursion usually results in less code (arguably
means less development time, fewer bugs)

— Recursion requires extra memory
* Good: <= O(log(n))
e Acceptable: O(n) — | prefer an O(1) iterative solution
e Bad: > O(n)

When should | use an array or a linked
implementation?

 Tradeoffs

— Space
* Arrays often have wasted space (holes)

* Linked nodes require a constant factor more memory
per node

— Locality of reference (memory caching)

* Arrays are in contiguous chunks of memory thus have
tremendous caching performance gains

* Whereas linked nodes may require fetching multiple
pages from memory

STANDARD TEMPLATE LIBRARY
(STL)

C++ Standard Template Library

algorithm
vector
gueue

unordered_map (lab 10)

— Also known as a hash table

— Expected insert / contains / remove: O(1)
— Trades space for size

HAPPY THANKSGIVING!

