Trees, Binary Search Trees, Lab 7, Project 2

Bryce Boe

2013/11/13

CS24, Fall 2013

Outline

- Stack/Queue Review
- Trees
- Binary Search Trees
- Lab 7 / Project 2

Stack / Queue Review

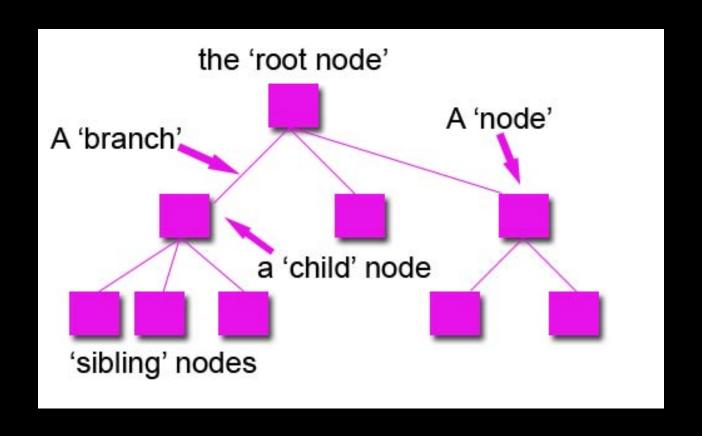
- Stack operations
 - push
 - pop
- Queue operations
 - enqueue
 - dequeue

TREES

Tree Explained

- Data structure composed of nodes (like a linked list)
- Each node in a tree can have one or more children (binary tree has at most two children)

General Tree



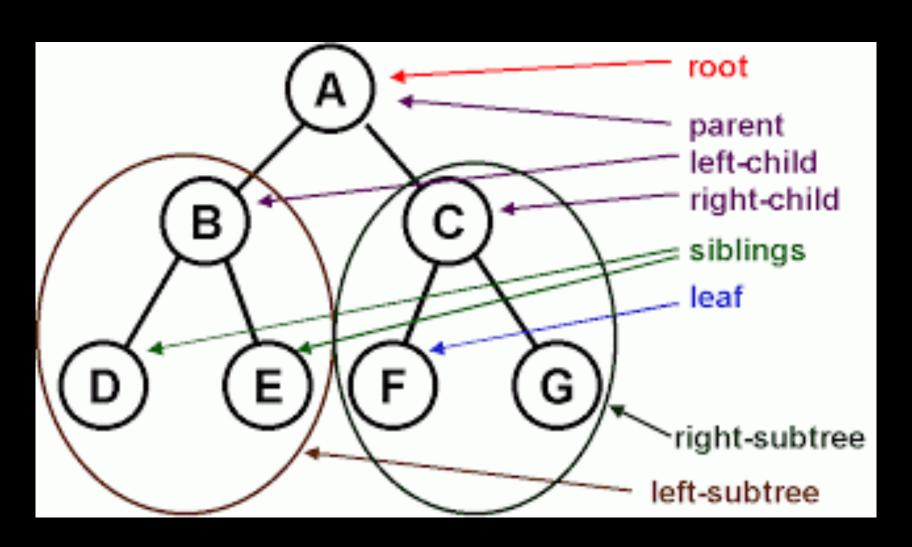
Tree Properties

- The root is the top-most node of the tree (has no parent)
- A node's parent is the node immediately preceding it (closer to the root)
- A node can have at most two children or child nodes
- A leaf is a node with no children

More Properties

- A node's ancestors are all nodes preceding it
- A node's descendants all all nodes succeeding it
- A subtree is the complete tree starting with a given node and including its descendants

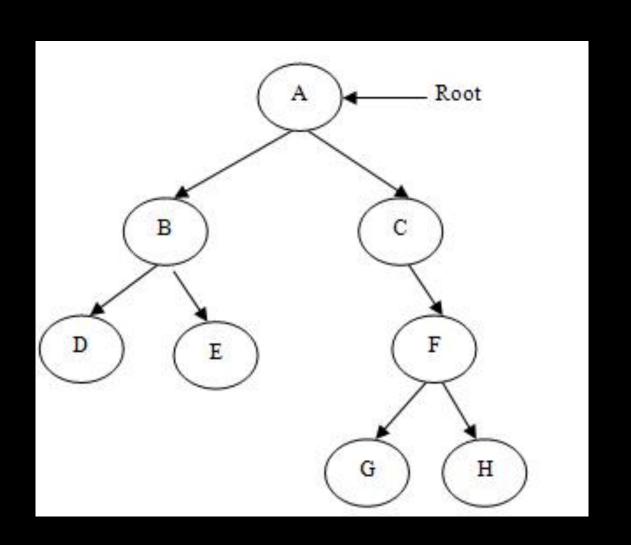
Tree properties



Binary Tree

Each node can have at most two children

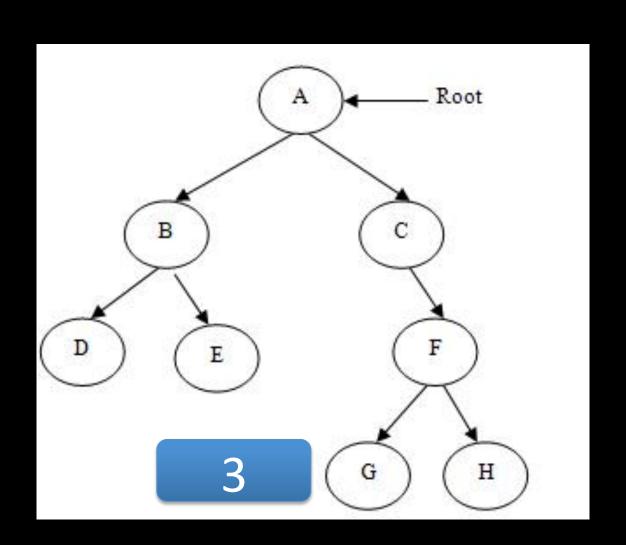
Binary Tree



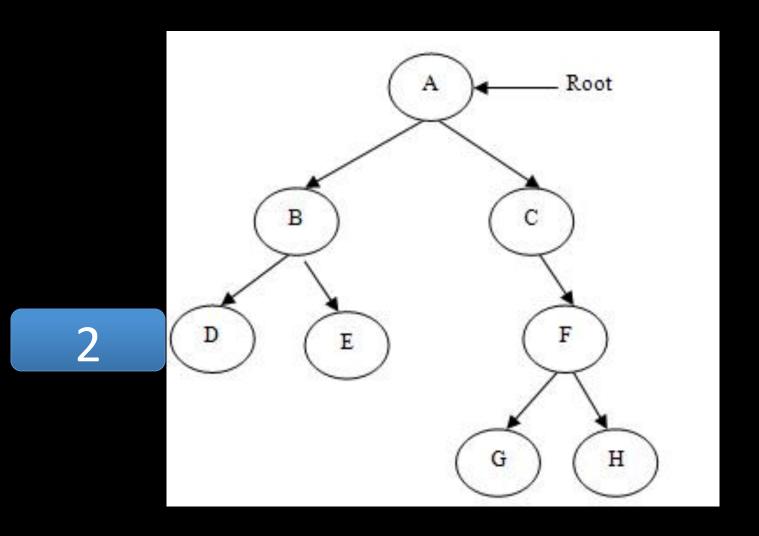
More Properties

- The depth of a node is how far it is away from the root (the root is at depth 0)
- The height of a node is the maximum distance to one of its descendent leaf nodes (a leaf node is at height 0)
- The height of a tree is the height of the root node

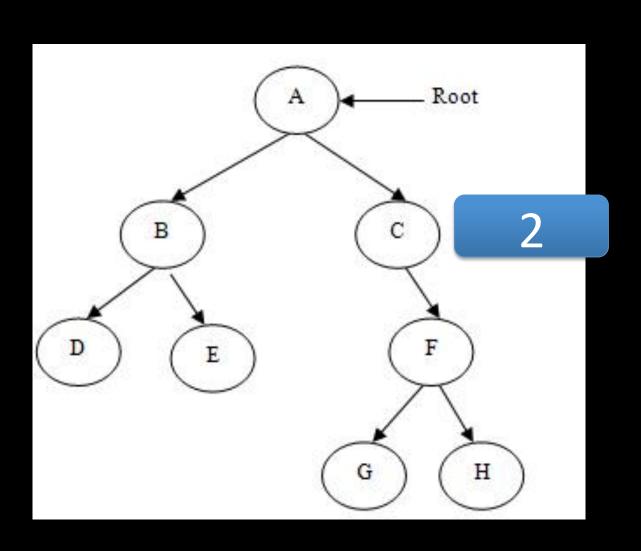
What is the depth of G?



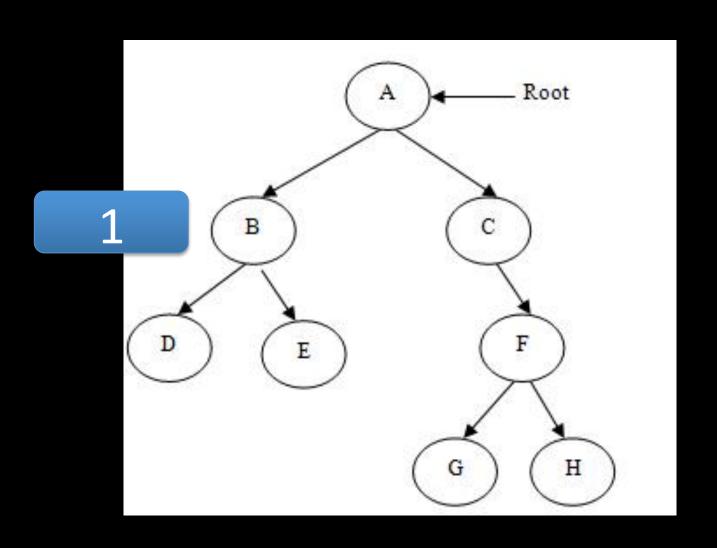
What is the depth of D?



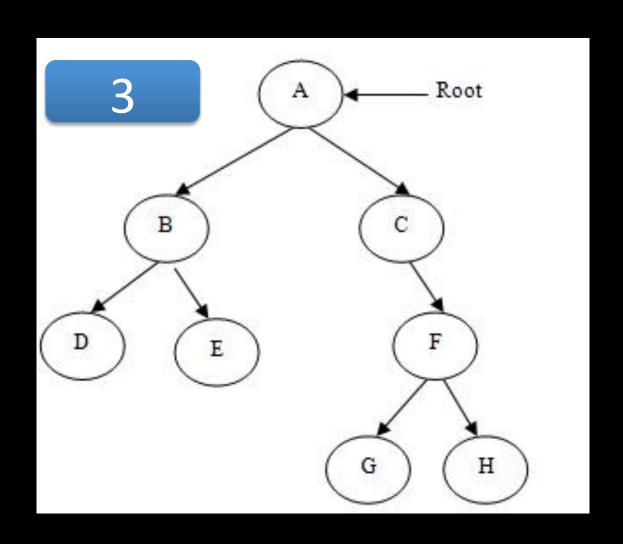
What is the height of C?



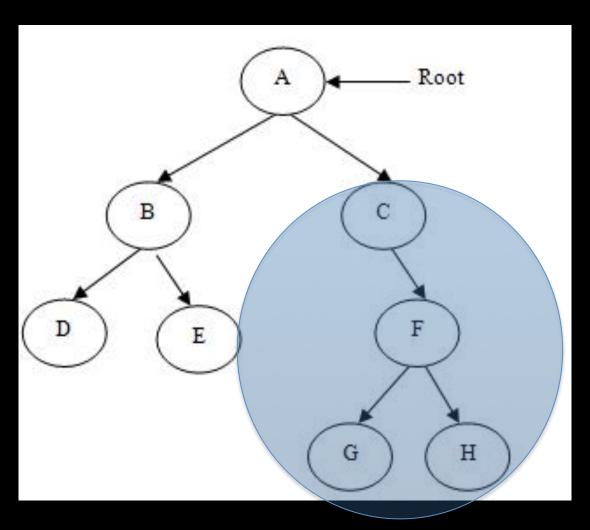
What is the height of B?



What is the height of the tree?



What nodes make up A's right subtree?

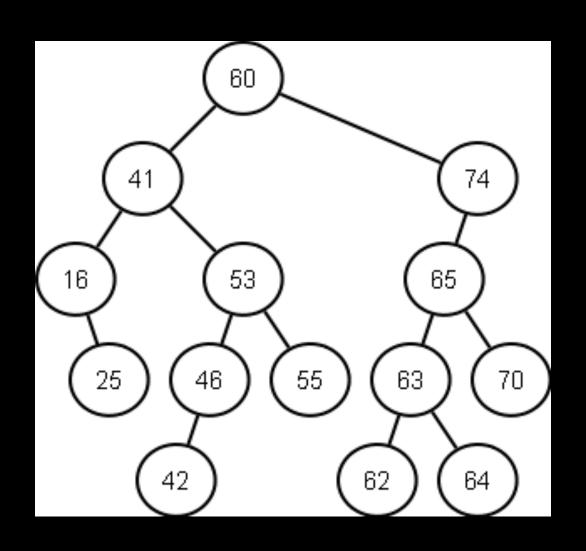


BINARY SEARCH TREES

Binary Search Trees

 A tree with the property that the value of all descendants of a node's left subtree are smaller, and the value of all descendants of a node's right subtree are larger

BST Example



BST Operations

- insert(item)
 - Add an item to the BST
- remove(item)
 - Remove an item from the BST
- contains(item)
 - Test whether or not the item is in the tree

What are the running times?

Balanced Tree

- A tree is considered balanced if
 - The height of the left and right subtrees differ by at most 1
 - The left and right subtrees are balanced

BST Running Times

- All operations are O(n) in the worst case
 - Why?
- Assuming a balanced tree (CS130A material):
 - insert: O(log(n))
 - delete: O(log(n))
 - contains: O(log(n))

BST Insert

- If empty insert at the root
- If smaller than the current node
 - If no node on left: insert on the left
 - Otherwise: set the current node to the lhs (repeat)
- If larger than the current node
 - If no node on the right: insert on the right
 - Otherwise: set the current node to the rhs (repeat)
- Otherwise fail the insert (attempt to insert a duplicate node)

BST Contains

- If the value is equal SUCCESS!
- If the value is smaller, continue down the left subtree
- If the value is larger, continue down the right subtree
- If the node is a leaf and the value does not match, FAILURE!

BST iterative traversal

```
ADT items;
items.add(root); // Seed the ADT with the root
while(items.has stuff() {
     Node *cur = items.random remove();
     do something(cur);
     items.add(cur.get_lhs()); // might fail
     items.add(cur.get_rhs()); // might fail
```

A look at lab 7 and project 2

- Lab 7 requires you to write insert,
 queue_output and a destructor for a BST
- The first part of project 2 requires you to utilize this code to implement a virtual tree

BST Remove

- If the node has no children simply remove it
- If the node has a single child, update its parent pointer to point to its child and remove the node

Removing a node with two children

- Replace the value of the node with the largest value in its left-subtree (right-most descendant on the left hand side)
- Then repeat the remove procedure to remove the node whose value was used in the replacement

Removing a node with two children

