Trees, Binary Search Trees, Lab 7,
Project 2

Bryce Boe
2013/11/13
CS24, Fall 2013



Outline

Stack/Queue Review
Trees

Binary Search Trees
Lab 7 / Project 2



Stack / Queue Review

e Stack operations
— push
— POop

* Queue operations

— enqueue
— dequeue



TREES



Tree Explained

e Data structure composed of nodes (like a
linked list)

e Each node in a tree can have one or more
children (binary tree has at most two children)



General Tree

the ‘root node’

A ‘branch; b <

\

. a ‘child node

‘sibling’ nodes

. A ‘node’




Tree Properties

The root is the top-most node of the tree (has
no parent)

A node’s parent is the node immediately
preceding it (closer to the root)

A node can have at most two children or child
nodes

A leaf is a node with no children



More Properties

A node’s ancestors are all nodes preceding it

* A node’s descendants all all nodes succeeding
it

* A subtree is the complete tree starting with a
given node and including its descendants



Tree properties

— oot

— parenl
e |aft-child

right-subtree

— |left-subtree




Binary Tree

e Each node can have at most two children



Binary Tree




More Properties

 The depth of a node is how far it is away from
the root (the root is at depth 0)

* The height of a node is the maximum distance
to one of its descendent leaf nodes (a leaf
node is at height 0)

* The height of a tree is the height of the root
node



What is the depth of G?




What is the depth of D?




What is the height of C?




What is the height of B?




What is the height of the tree?




What nodes make up A’s right
subtree?




BINARY SEARCH TREES



Binary Search Trees

* A tree with the property that the value of all
descendants of a node’s left subtree are
smaller, and the value of all descendants of a
node’s right subtree are larger






BST Operations

* insert(item)
— Add an item to the BST

* remove(item)
— Remove an item from the BST

e contains(item)

— Test whether or not the item is in the tree




Balanced Tree

e Atreeis considered balanced if

— The height of the left and right subtrees differ by
at most 1

— The left and right subtrees are balanced



BST Running Times

e All operations are O(n) in the worst case
— Why?
e Assuming a balanced tree (CS130A material):
— insert: O(log(n))
— delete: O(log(n))
— contains: O(log(n))



BST Insert

If empty insert at the root

If smaller than the current node

— If no node on left: insert on the left

— Otherwise: set the current node to the lhs (repeat)
If larger than the current node

— If no node on the right: insert on the right

— Otherwise: set the current node to the rhs (repeat)

Otherwise fail the insert (attempt to insert a
duplicate node)



BST Contains

If the value is equal SUCCESS!

If the value is smaller, continue down the left
subtree

If the value is larger, continue down the right
subtree

If the node is a leaf and the value does not
match, FAILURE!



BST iterative traversal

ADT items;

items.add(root); // Seed the ADT with the root

while(items.has_stuff() {
Node *cur = items.random_remove();
do_something(cur);
items.add(cur.get_lhs()); // might fail
items.add(cur.get_rhs()); // might fail



A look at lab 7 and project 2

* Lab 7 requires you to write insert,
queue output and a destructor for a BST

* The first part of project 2 requires you to
utilize this code to implement a virtual tree



BST Remove

* |f the node has no children simply remove it

 |f the node has a single child, update its
parent pointer to point to its child and remove
the node



Removing a node with two children

* Replace the value of the node with the largest

value in its left-subtree (right-most
descendant on the left hand side)

* Then repeat the remove procedure to remove
the node whose value was used in the

replacement



Removing a node with two children

-»-» A
A A A A AN




