Sorting, Stacks, Queues

Bryce Boe
2013/11/06
CS24, Fall 2013



Outline

 Finish Lab 5 Part 2 Review
* Lab 6 Review / Sorting / C++ Templates
e Stacks and Queues



O(n?) Sorting Algorithms

e Bubble sort

— Bubble the largest element to the end in each
pass

* |nsertion sort

— Insert the next element into the sorted portion of
the list

e Selection sort

— Find the smallest (or largest) item and put it in its
proper location



Templates

* Before templates:

— Need a version of the data structure for each type
it contains OR store (void™®) pointers in the
structure

* With templates:

— Declare functions / classes that can operate on
arbitrary types



STACKS



Stack

e A First-in Last-out data structure (FILO)
— Operates like a stack of papers

* Operations
— void push(T item)
* Add an item to the stack
— T pop()

 Remove and return the most recently added item from
the stack



Linked-List Implementation

e push(item)

— Use insert_at(0, item) for a O(1)
e pop(item)

— Use remove_at(0) for a O(1)



Array-based implementation

e push(item)
— Use insert_at(-1, item) for an O(1) insertion
— O(n) when the array must expand

* pop()

— Use remove_at(-1) for an O(1) removal



QUEUES



Queues

 Whatis a queue?

— A data structure that allows access to items in a
first in, first out manor (FIFO)

 What are its operations?
— enqueue (add to the queue)
— dequeue (remove the oldest item in the queue)

 What are some example queues?
— Waiting in line, task scheduling, data buffering



Linked List Implementation

e Stacks add and remove from the same side,
thus for queues it makes sense to add and
remove from opposite sides

* BUT, adding and removing from the end of the
list is O(n)



Make the linked list smarter

* Add a tail pointer
— Gives us immediate access to the end of the list
— Can we improve these functions’ efficiency?

* insert_at(-1, item)? NN
* remove_at(-1)? N0




Linked-List Implementation

* enqueue(item)
— Use insert_at(-1, item) for a O(1)
* Assumes we have a working tail pointer in the list
* dequeue(item)

— Use remove_at(0) for a O(1)



Array-based implementation

* Toimplement an unbounded queue on top of the
array-based implementation of a list requires
treating the array as circular

 Rather than using O as a base index, the queue
needs to keep track of which index should be the
base, and use modular arithmetic to wrap around

* When the array needs to grow, the values must
be manually “reset” such that the base index is at
the zero position



Array-based implementation

* enqueue(item)
— Use insert_at((BASE + size) % allocated, item) for
an O(1) operation
* dequeue(item)

— Use remove_at(BASE) for an O(1) operation and
make sure to increment the BASE



Problems we can now solve

 Write a program to determine if a given text is
a palindrome:

— racecar, stats

— poordanisinadroop

 Take a few minutes to solve it with your
neighbor



Palindrome Solution

bool is_palindrome(char xword) {
Queue queue;
Stack stack;
int index = 0;
~ //iterate through the word adding to the queue
while(word[index] != ‘\0’) {
stack.push(word[index]);
_ queue.enqueue(word [index++]); J
I3
while(!queue.is_empty())
if (stack.pop() '= queue.dequeue()
return false;
return true;




