Complexity

Bryce Boe
2013/10/21
CS24, Fall 2013



Outline

Compiler Review
Project 1 Questions
Complexity (Big-O)
C++7?



COMPILER REVIEW



What does the following produce?

clang foobar.c




What does the following produce?

clang -c foobar.c




What does the following produce?

clang foobar.o




What does the following produce?

clang foobar.c blah.c




What does the following produce?

clang -g foobar.c




What does the following produce?

clang foobar.c -o foo




PROJECT 1 INFO



Resubmissions until 2PM Wednesday

* Keep working on project 1

— Getting through it completely will help
tremendously on the other projects

* | have an office hour tomorrow
 Don’t forget about lab 4 (due Tuesday night)
 We'll go over a solution on Wednesday



COMPLEXITY



Space v. Time

e Space complexity is how much storage relative
to the input does an algorithm require

 Time complexity is how many computations
relative to the input does an algorithm require

* |n computing we often trade space for time or
time for space to get the desired performance



Think about it

 How much (extra) space is required to
compute the sum of a list of numbers?




Think about it

* How much time is required to compute the
sum of a list of numbers?




Think about it

How much (extra) space is required to sort a
ist of numbers?

How much time?




Think about it

* How much time is required to see if an item is
contained in a sorted list?




Big-O

* |[n complexity analysis we typically care about
the worst-case

 We also consider the input as it grows to
infinity
* We refer to this worst-case as Big-O, or O(?)



Computing Big-O

If something has an actual running time
function of:

T(n) = 2n3 + 100n? + 1024n + 10trillion
O(T(n)) = O(n°)

Consider only the fasted growing term, and
remove any factors.



Common Ordered Complexities

O(1) — constant
O(log(n)) — logarithmic
O(n) —linear

O(nlog(n)) — linearithmic
O(n?%) — quadratic

O(2") — exponential
O(n!) — factorial



O(?)

int a[1024]; // assume allocated and not static

T oW
return a[2];

else

return a[0];



O(?)

int a[4]; // assume allocated and not static
int n = sizeof(a) / sizeof(int);

for (inti=0;i<n; ++i)

sum += ali];
return sum;



O(?)

int a[4]; // assume allocated

return a[0] + a[1] + a[2] + a[3];




O(?)

int a[1024]; // assume allocated
int n = sizeof(a) / sizeof(int);

for (inti=0;i<n; ++i)

for (intj=0;j < n; ++j)
if (a[i] == alj])
++dups;



O(?)

int a[1024]; // assume allocated
int n = sizeof(a) / sizeof(int);

for (inti=0;i<n; ++i)

for (intj=1i;j<n; ++j)
if (a[i] == alj])
++dups;



C++ INTRODUCTION



Why C++?

Problems with C
— Has a single global namespace

— Cannot use the same name for functions with
different types (e.g., min(int, int) and min(double,
double)) — called overloading

— Difficult to minimize source-code repetition for
similar functions with different types



Some Differences

#tinclude <stdio.h> = #include <iostream>
— Or if you want fprintf, etc use #include <cstdio>

printf(“Hello\n”); = cout << “Hello\n”;

Rather than defining a struct which only
contains data, define a class which contains
data and methods on the data

throw exceptions rather than use return
values to represent error cases



Classes

* Provide encapsulation

— Combining a number of items, such as variables
and functions, into a single package, such as an
object of some class (or instance of the class)



Scope Resolution Operator

* ClassName::method name

» Used to identify the scope, class in this case,
that the method belongs to as there may be
more than 1 instance of method name

* Scope resolution isn’t necessary if you are also
a member of that class



