Linked Structures, Project 1:
Linked List

Bryce Boe
2013/10/16
CS24, Fall 2013



Outline

e Lab 3 Review
* Project 1 Notes
 Linked Structures



LAB 3 REVIEW



Student Comments

* “I haven't learned anything new but instead
have spent hours writing a variety of loops
and random code searching for some bug...”

 “What I've been doing was unceasingly
putting in random functions and random
parameters for the whole day trying to figure
out some bugs.”

 “And the worse thing is that | don't even know
how it came out when | found it...”



Lab 3 was supposed to be challenging

 Many of you practiced fuzz testing

— Great way to perform black-box testing to attempt
to find bugs

* An exercise in trying something and testing if
it worked

— Code, compile, test (repeat over and over)

* Now we’ll make sense of the bugs



Project 1 Notes

* Do not use static or global variables (you will
lose significant points if you rely on them)
* You must validate all memory allocations

— if an allocation fails make sure you don’t leak
other memory

* Get the array list working up to size N before
dealing with reallocation



LINKED STRUCTURES



What’s wrong with using arrays to
store data?

* Arrays require continuous chunks of memory
* Unless the array is full, there is wasted space

 Expanding the array is typically done by
doubling the size

— Worst case time: Have to copy all the existing
items

— Hint: realloc does this for you (recall how realloc is
implemented)



How long does it take?

Appending an item to a non-full array?
Appending an item to a full-array?
Removing an item from the end of the array?

Removing an item from the beginning of the
array?

Accessing an element in the middle of the



Single-link Node structure

struct Node {
int data;
struct Node * next;



Node allocation walkthrough

Add an initial node
Add another node at the beginning

Add another node at the end
Remove a node at the beginning
Remove a node at the end



How can we access the data of specific
elements?

* The data of the second element?
— head->_next->_data

* The data of the third element?
— head-> next-> next-> data;
* (Generally) The data of the nth element?
struct Node *tmp = head;
for (inti=0;i<n; ++i)
tmp = tmp->_next;
tmp->_ data;



