C Review

Bryce Boe
2013/10/02
CS24, Fall 2013



Outline

e Review Lab 1
e Research consent forms
e C Review



LAB 1 REVIEW



Lab 1 Common Problems

Performing failure testing too late
Not handling the O case
Whitespace issues

Others?



Lab 1 Solution

e <In-class review of lab 1 solution source code>



CS16 REVIEW



What are the sizes of the following
primitive types (x86— Intel 32 bit)?

int
float
double
char
void*
int*

char*



Arrays

* Reference cs16 review_arrays.c

e Unitialized:
— int foo[16];
— char bar[1024];
* Fully initialized
— int blah[] = {1, 2, 3, OxDEADBEEF, 0b1010};

— char msg[] = “hello world”;
— char other[] = {‘a’, ‘b’, 99, ‘d’, ‘e’};



Structures

e Structures (struct keyword) allows you to define your
own types (see cs16 review_struct.c)

struct Point {
int x;
inty;
char *name;

5

struct Point p1; // Uninitialized
struct Point p2 ={16, 32, “some point”}; // Initialized



Pointers

e A primitive type that stores the address to where
the data is actually stored in memory

* When accessing elements of a struct, use -> to
automatically dereference the object

struct Point *p1 = malloc(sizeof(struct Point));
pl->name = “some name”;

(*pl).name = “some name”; // the same as above
free(pl); // Always free the memory when done



C-strings

C-strings are an array of characters followed
by \0’ (0b0000)

C

C
C
C

nar local_string[] = “hello world”;
nar manual_string[] = {‘a’, ‘b’, ‘c’, ‘\0’};
nar not_a_cstring[] = {'X, ‘y’, 'Z'};

nar *pointer_string = ”heIIo world”;



