Wt

U

Name:

CS 24
Midterm Exam
Summer 2013 C

Data and Memory /16
FILE1/0 /16
List ADT /16
Other /12
Total /60

Please do not begin until told to do so.

Exam Rules

. No one may leave for any reason and come back to work on the test. If you
need to use the bathroom, do it now.

There may not be any extra material on your desk or adjacent ones.

You may not wear any sunglasses, hats, or hoods.

. You may not use any electronic devices of any kind. Any headphones need to
be put away.

Please don’t sit in the front row of the classroom.

. Ifyou appear to be looking around, you will be moved to the front row.



Use for Reference throughout the Test

struct BasicData {
int _key;
char _buf[8];
5

struct BasicNode {
struct BasicData _data;
struct BasicNode *_a;
struct BasicNode *_b;

1

void do_something_interesting(int n) {
struct BasicNode nodes[4];
struct BasicNode *tmp;
if (n < 4)
tmp = nodes;
else
tmp = malloc(sizeof(struct BasicNode) * n);
tmp[@]._a = NULL;
tmp[n - 1]._b = NULL;
for (int 1 = 0; 1 < n; ++1) {
tmp[i]._data._key = 1i;

if (i > 0)
tmp[i - 1]._b = tmp[i];
tmp[i];
ks
if (n >= 4)
free(tmp);

3

int main() {
for (int i = 0; 1 < 10; ++i) {
do_something_interesting(i);

3

return 0;



Data and Memory

1. (6 pts.) What are the three segments of memory (as described in class) and what
is contained within each?

2. (2 pts.) [From page 2] What is the size, in bytes, of the Bas1icData structure?
Recall that a character is 1 byte, an integer 4 bytes, and pointers are 4 bytes.

3. (2 pts.) What is the size, in bytes, of the Bas1cNode structure?

4. (6 pts.) What are all the elements and their sizes that make up the simplified
activation record (data only) of the function do_something_interesting? Hint: the
sum of these sizes should be the total size of do_something_interesting’s
simplified activation record.



FILEI/O

File I/0 Function Prototypes
e FILE* fopen(char *filename, char *mode);
e int fclose(FILE *stream);
e int fgetc(FILE *stream);
e char *fgets(char *buf, int n, FILE *stream);
e int fputc(int c, FILE *stream);
* 1int fputs(char *buf, FILE *stream);

5. (16 pts.) Complete the code to copy the contents of src_filetodst_file
replacing any newlines with spaces. The program should output the number of
newlines that were removed. That is, if the contents of the file Src are
“Julie\nis\namazing!” the contents of the file dst after the program
executes should be “Julie 1s amazing!” and the program should produce
output similar to “Replaced 2 newlines”. Note that you need not perform
any error checking.

#include <stdio.h>
int main() {
FILE *src_file
FILE *dst_file

fopen("src", "r");
fopen("dst", "w");

return 0;



List ADT

6. (8 pts.) In project one you wrote the function 11st_push_back that adds an
item to the end of the list. Complete the linked-list function implementation for
list_insert_at thatinserts items into the provided position in the list. Note
that you can assume the value of position is valid. Position 0 indicates insert at
the front of the list, and position equal to the size of the list indicates insert at the
end of the list. Recall that the L1st structure has only the attribute _head, and
the Node structure has the attributes _data, and _next.

int list_insert_at(struct List *list, int position,
char *item) {

struct Node *node = malloc(sizeof(struct Node));

if (!'node)
return 0;

node->_data = item;

if (position == @) { /* Insert at the front */
node->_next = list->_head;
list->_head = node;

}

else {

}

return 1;



7. (2 pts.) What is the big-O of the linked-list implementation of the
list_insert_at function?

8. (6 pts.) Assume we optimized the linked-list implementation of the List ADT
such that we could get the size of the list in O(1). Describe a workload, or usage
of the List ADT, in which it would be beneficial to use the array-list
implementation of the List ADT. Justify your answer.

Other

9. (4 pts.) What is the output of the following program when executed via:
./a.out unwind their cassette slowly tomorrow evening

#include <stdio.h>
int main(int argc, char *argv[]) {
for(int i = 0; i < argc; ++i) {
printf("%c", argv[il[2]);

ks
printf("\n");
return 0;

10. (2 pts.) [From page 2] What is the worst-case running time, big-0, of the
do_something_interesting function?

11. (2 pts.) [From page 2] What is the big-O of the main function?

12. (4 pts.) [From page 2] What is the smallest number of test cases needed to
perform complete branch-testing of the do_something_interesting
function? What is one minimal set of values for parameter h that results in
complete branch-testing? Hint: the number of items in the set should match your
first answer.



